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1 Let P,Q be two probability mass functions on the same finite alphabet A.

(a) State Stein’s lemma for a hypothesis test between P and Q.

(b) State the Neyman-Pearson lemma for the same hypothesis test as in part (a), and
write down the alternative form of the Neyman-Pearson region in terms of relative
entropy.

(c) Give a proof of the direct part of Stein’s lemma using the Neyman-Pearson region
instead of the decision region based on likelihood ratio-typical strings. Specify the
value of the threshold you need for the Neyman-Pearson region.

(d) Prove the converse part of Stein’s lemma.

2 In your proofs of the following three inequalities, justify each step in your arguments.
All random variables are assumed to take values in finite alphabets.

(a) Let {Xn} be a sequence of independent, discrete random variables, and let Z be
another discrete random variable. Show that:

H(Z) >
∞∑

i=1

I(Xi;Z).

(b) Let X1, X2, . . . , Xn be arbitrary discrete random variables. Prove that

H(Xn
1 ) 6 1

n− 1

n∑

i=1

H(Xi−1
1 , Xn

i+1),

where, for j > i, Xj
i denotes the block of random variables (Xi, . . . , Xj), while for

j < i Xj
i can be trivially assumed to be the “empty” random variables Xj

i = 0 with
probability one.

(c) Now let Xn
1 = (X1, X2, . . . , Xn) be independent random variables with values in

a finite alphabet A, write Pi for the probability mass function (PMF) of each Xi,
i = 1, 2, . . . , n, and let P = P1 × P2 × · · · × Pn denote their joint PMF. Let Y n

1 be
arbitrary random variables with values in A with joint PMF Q. Write P (i) for the
PMF of (Xi−1

1 , Xn
i+1) and Q(i) for the PMF of (Y i−1

1 , Y n
i+1), for each i = 1, 2, . . . , n.

Using part (b) or otherwise, prove that:

D(Q‖P ) 6
n∑

i=1

(
D(Q‖P )−D(Q(i)‖P (i))

)
.

[Hint: Expand D(Q‖P ) and use part (b) on H(Y n
1 ).]
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(a) State and prove the Pythagorean identity for relative entropy.

(b) Let E be a closed, convex set of probability mass functions (PMFs) on a finite
alphabet A. Let P be a PMF of full support on A, and suppose that Q∗ ∈ E
achieves the infimum, infQ∈E D(P‖Q). Here you will show that:

D(P ′‖Q′) + D(P ′‖P ) > D(P ′‖Q∗), for all P ′ and all Q′ ∈ E. (1)

i. Show that for any Q′ ∈ E:

∑

a∈A
P (a)

[
1− Q′(a)

Q∗(a)

]
> 0.

[Hint: Use Qt := (1− t)Q∗ + tQ′, for 0 6 t 6 1.]

ii. Show that for any Q′ ∈ E and any P ′

∑

a∈A′
P ′(a)

[
1− P (a)Q′(a)

P ′(a)Q∗(a)

]
> 0,

where A′ = {a ∈ A : P ′(a) > 0} denotes the support of P ′.

iii. Prove (1).
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(a) State Kraft’s inequality.

(b) State and prove the competitive optimality property of the Shannon code.

Suppose C : A → B∗ is a one-to-one code on a finite alphabet A, that is, C is an
injective map from A to the set of all finite-length binary sequences

B∗ := {λ} ∪
[⋃

n>1

{0, 1}n
]
,

including the empty string λ of length zero. Let L : A → {0, 1, . . .} denote the length
function of C.

(c) Suppose X is a random variable with probability mass function P on A. Show that
there is always a code C with a length function L such that,

E[L(X)] 6 H(X) bits,

where H(X) is the entropy of X. [Hint: Explain why you can assume without
loss of generality that A = {1, 2, . . . ,m} and that the probabilities of P (i) are non-
increasing. Think of an efficient way to assign codewords from B∗ to the elements
i ∈ A.]

(d) Let X be uniformly distributed on A = {1, 2, . . . ,m} for some m > 3. Give an
example of a one-to-one code C with length function L such that E[L(X)] is strictly
less than H(X).
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