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1 Changing neighborhoods.
Consider the minimax bias problem

min
{Tn}⊆T

max
F∈PKε (Φ)∩M

b({Tn}, F ).

Here, we write

PKε (Φ) :=

{
F : sup

t∈R
|F (t)− Φ(t)| 6 ε

}

to denote the Kolmogorov ε-neighborhood of the standard normal distribution, and letM
denote the class of distributions with a finite variance and a probability density function
that is nonzero on all of R. We write T to denote the class of translation-invariant
estimators for which the asymptotic bias b({Tn}, F ) = |limn→∞ EF (Tn)| is well-defined for
all F ∈M. Suppose ε ∈

(
0, 1

2

)
.

(a) Show that when {Tn} corresponds to the sample median, we have the upper bound

max
F∈PKε (Φ)∩M

b({Tn}, F ) 6 Φ−1

(
1

2
+ ε

)
:= b1.

[Hint: You may use, without proof, the fact that b({Tn}, F ) = F−1
(

1
2

)
for F ∈M.]

(b) Suppose we can construct symmetric distributions F+, F− ∈ PKε (Φ) ∩M, centered
at ±b1, such that F−(t) = F+(t+ 2b1). Show that this implies the lower bound

min
{Tn}⊆T

max
F∈PKε (Φ)∩M

b({Tn}, F ) > b1.

Thus, the median is minimax optimal.

(c) Now find a construction of F+ and F− according to the prescription in part (b).
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2 Influence vs. breakdown.
For 0 6 α < 1

2 , consider the α-trimmed mean, defined as

Tn(x1, . . . , xn) :=
1

n− 2m

n−m∑

i=m+1

x(i),

where m = bαnc and x(i) denotes the ith order statistic. If we define the functional

T (F ) =
1

1− 2α

∫ 1−α

α
F−1(s)ds,

it can be shown (under appropriate regularity conditions) that Tn
P→ T (F ) when xi

i.i.d.∼ F .

(a) Compute the influence function IF (x;T, F ) when F is a differentiable, strictly
monotonic cumulative distribution function of a distribution with a probability
density function which is symmetric around 0.

[You may assume that interchanging derivatives and integrals is allowed, and also
use the fact that

d

dt
F−1t (s)

∣∣∣
t=0

=
s−∆x(F−1(s))
F ′(F−1(s))

,

when Ft = (1− t)F + t∆x, without proof.]

[Hint: Your answer should be the influence function of the Huber M -estimator with
parameter k = −F−1(α). You may find it useful to note that F−1(1− t) = −F−1(t)
and F ′ is even. Also recall the formula dF−1(t)

dt = 1
F ′(F−1(t))

.]

(b) Show that the breakdown point of the trimmed mean is 1
nbαnc.
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3 Median as a scale M-estimator.
Consider the normal-scale family, where Fθ is the cdf of a N(0, θ2) distribution. Let

Tn denote the sample median of {|x1|, . . . , |xn|} (defined in the usual way as the average
of the two middle order statistics when n is even).

(a) Suppose the |xi|’s are unique (which happens with probability 1 when xi
i.i.d.∼ Fθ).

Show that Tn is a solution to the estimating equation 1
n

∑n
i=1 ψ

(
xi
t

)
= 0, where

ψ(u) = sign(|u| − 1), and sign(u) is defined in the usual way to be ±1 for ±u > 0
and 0 for u = 0. Thus, Tn is a scale M -estimator.

(b) What is the asymptotic distribution of Tn when xi
i.i.d.∼ Fθ? Use the result to derive

an asymptotically valid level-α hypothesis test for

H0 : θ2 = 1 vs. H1 : θ2 > 1

based on Tn.

[Hint: One way to approach this problem is to use the general theorem about location
M -estimators, which states that

√
n(Tn − t0) d→ N

(
0,

σ2(t0)

(λ′(t0))2

)
,

where t0 is a root of λ(t) = EF [ψ(xi − t)] and σ2(t) = EF [ψ2(xi − t)]− λ2(t).]
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4 Not quite an M-estimator.
Suppose {xi}ni=1 are i.i.d. with µ := E(xi) and E(x2i ) 6 σ2 < ∞. Let ψ be a

non-decreasing function satisfying

− log

(
1− t+ t2

2

)
6 ψ(t) 6 log

(
1 + t+

t2

2

)
.

(a) Show that for any θ > 0, we have

E

[
exp

(
n∑

i=1

(ψ(θxi)− θE(xi))
)]

6 exp

(
θ2

2

n∑

i=1

E(x2i )

)
,

E

[
exp

(
n∑

i=1

(θE(xi)− ψ(θxi))
)]

6 exp

(
θ2

2

n∑

i=1

E(x2i )

)
.

[Hint: The inequality 1 + x 6 exp(x) for all x ∈ R may be helpful.]

(b) Let µ̂θ =
1
nθ

∑n
i=1 ψ(θxi). Use the inequalities in part (a) to show that

P

(∣∣∣∣∣
1

θ

n∑

i=1

(ψ(θxi)− θE(xi))
∣∣∣∣∣ > t

)
6 2 exp

(
−θt+ θ2σ2n

2

)
,

for any θ, t > 0. Conclude that for δ > 0, taking θ =

√
2 log(2/δ)

σ
√
n

and

t = σ
√

2n log(2/δ) gives

P

(
|µ̂θ − µ| > σ

√
2 log(2/δ)

n

)
6 δ.

[Hint: Use Markov’s inequality after exponentiating the appropriate quantities.]
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