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You may assume all the random variables in this question are discrete.

(a) Suppose the random variables (A1, X,A2, Y ) satisfy a causal model defined by the
graph below which represents a sequentially randomised experiment. Let Y (a1, a2)
be the counterfactual of Y under the intervention (A1, A2) = (a1, a2). Explain what
causal identification of E[Y (a1, a2)] means. Then obtain an identifying formula for
E[Y (a1, a2)]. [You may directly apply the g-computation formula in the lectures.]

A1 X A2 Y

(b) Now consider the causal graphical model in the next diagram with two unmeasured
variables U1 and U2. Show that the formula you obtained in part (a) still identifies
E[Y (a1, a2)]. Do you think your formula still holds when there is a directed edge
from X to Y in this graph? Justify your answer.

A1

U1

X A2

U2

Y

(c) Consider the more general setting where we observe T > 2 sequential treatments
A1, A2, . . . , AT and T intermediate measures X1, X2, . . . , XT . The variables are
measured in the temporal order: A1, X1, A2, X2, . . . , AT , XT . Let Y = XT be the
final outcome we are interested in.

Suppose there are unmeasured variables that are causal ancestors of some of the
observed variables. Extend your proof in part (b) to give a sufficient condition such
that E[Y (a1, a2, . . . , aT )] is identifiable. Your condition should be general enough
to include part (b) as a special case. [Your condition can either be graphical or a
series of conditional independences for counterfactuals.]
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(a) Consider the setting in the diagram above where the causal effect of A on Y is still
confounded by an unmeasured variable U after conditioning on the scalar variable
X. An instrumental variable (Z in the diagram) can help to remove the unmeasured
confounding bias. In words, describe the assumptions in this causal model in
order for Z to be a valid instrumental variable. Then state these assumptions
mathematically.

Throughout the rest of this question, suppose the assumptions in part (a) are
satisfied and the causal effect of A is homogeneous, so Y (a) − Y (0) ≡ β0 where Y (a)
is the counterfactual outcome under the intervention A = a. Assume E[X] = E[Z] =
E[A] = E[Y ] = 0.

Consider the following parametric assumptions on the distribution of (X,Z,A, Y ):

• Assumption 1: E[Y − β0A | X] = α0X;

• Assumption 2: E[Z | X] = γ0X.

These assumptions might not be true but can still help us to estimate β0. Let
(Zi, Xi, Ai, Yi), i = 1, . . . , n be an i.i.d. sample from this distribution and γ̂ be the least
squares estimator of γ0 defined in Assumption 2, γ̂ = (

∑n
i=1 ZiXi)/(

∑n
i=1 Z

2
i ).

Let (α̂, β̂) be the solution of the following equations:

1

n

n∑

i=1

(Yi − βAi − αXi)(Zi − γ̂Xi) = 0,

1

n

n∑

i=1

(Yi − βAi − αXi)Xi = 0.

(b) Without using Assumption 1 or Assumption 2, give a sufficient condition on the
distribution of (X,Z,A, Y ) so that the solution exists with probability tending to 1
as n → ∞. [You need not state regularity conditions for the law of large numbers
in your proof.]

[QUESTION CONTINUES ON THE NEXT PAGE]
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(c) Show that β̂ is doubly robust in the sense that β̂ consistently estimates β0 when
n→∞ if at least one of Assumptions 1 and 2 is true.

(d) Suppose both Assumptions 1 and 2 are true. Let Vi = Yi−β0Ai−α0Xi. Derive the
asymptotic variance of β̂ under two additional assumptions: Var(Vi | Ai, Xi) = σ2

and E[Ai | Xi, Zi] = λ(Zi− γ0Xi). [You need not state regularity conditions for the
central limit theorem and the Z-estimation theory covered in the lectures.]

Part III, Paper 221



5

3

Suppose random variables A, Y,X1, X2, . . . , Xp and their counterfactuals satisfy the
causal model with respect to a directed acyclic graph G. We are interested in identifying
the expectation of Y (a) where Y (a) is the counterfactual of Y under the intervention
A = a. Suppose all the random variables are measured.

(a) State the definition of faithfulness of a graphical model.

For the rest of this question, assume the joint distribution of (A, Y,X1, X2, . . . , Xp)
is faithful to G.

(b) Let I ⊆ {1, 2, . . . , p} be an index set and XI be the corresponding entries in
X = (X1, . . . , Xp). State the definition of a back-door path from A to Y and the
back-door criterion for XI that allows one to conclude that Y (a) is conditionally
independent of A given XI .

Y (a) ⊥⊥ A | XI . (1)

(c) In the rest of this question, we examine how to formalise the concept that a random
variable Xi is a “confounder” for the causal effect of A on Y (condition (1) only
means there are“no unmeasured confounders”). It is expected that a good definition
of a confounder should satisfy the following two properties:

Property 1: If XJ contains all the confounders among X1, . . . , Xp, then condition (1)
holds for I = J .

Property 2: For any Xi that is a confounder, there exists a possibly empty subset
J ⊆ {1, 2, . . . , p} \ {i} such that condition (1) holds for I = J ∪ {i} but
not for I = J .

Consider the following candidate definitions of a confounder. For each of the
following definitions, say whether or not the definition satisfies Property 1 and
whether or not the definition satisfies Property 2. Give a proof or counterexample
in each case as appropriate.

Definition 1: Xi is a confounder if Xi is not a descendant of A and blocks a back-door
path from A to Y in G.

Definition 2: Xi is a confounder if Xi is not a descendant of A and belongs to every
“minimal sufficient adjustment set”. (I ⊆ {1, 2, . . . , p} is called a minimal
sufficient adjustment set if (1) holds for I but not any strict subset of I.)

Definition 3: Xi is a confounder if Xi is not a descendant of A and there exists
J ⊆ {1, 2, . . . , p} \ {i} (J can be empty) such that Xi 6⊥⊥ A | XJ and
Xi 6⊥⊥ Y | (A,XJ).

[You may choose to work on any order of the Definitions and Properties.]
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This question concerns an applied study of the causal effect of Catholic high school
attendance on educational attainment and test scores in the United States. This study
uses a survey of 11,839 students in 8th grade who are then followed up after their 10th
grade and 12th grade.

A wide variety of information was collected. The investigator of this study defines
treatment as a binary indicator of whether the survey participant was in a Catholic high
school or a non-Catholic school in their 10th grade (denoted as CH10). This question
considers two outcome variables: the 12th grade maths standardised score (MATHS12)
and a binary indicator of whether the survey participant enrolled in a four-year college
(COLL12). Several covariates are adjusted for in this study, including log of family income
(INCOME8), whether the student lived in an urban area (URBAN8), and the 8th grade maths
score (MATHS8). The real study actually adjusts for many other covariates; for the purpose
of this question, we will just assume these are the only three covariates that are adjusted
for.

(a) The investigator also constructs a subsample of the survey participants who went
to a Catholic middle school in their 8th grade. The following table compares the
covariate means in the the full sample (11,839 participants) with the Catholic 8th
grade subsample (1,006 participants):

Full sample Catholic 8th grade
CH = 1 CH = 0 Difference CH = 1 CH = 0 Difference

Sample size 11,167 672 366 640

INCOME 10.23 10.72 .49*** 10.47 10.66 .19***
URBAN .19 .46 .27*** .47 .51 .04
MATHS8 51.19 55.05 3.86*** 54.12 55.59 1.47

*** means the difference is statistically significant at level 0.01.

Give one advantage and one disadvantage of using the Catholic 8th grade subsample
to study the causal effect of Catholic high school attendance on educational
outcomes.

(b) The investigator then uses ordinary least squares to estimate the “effect” of CH10

on MATHS12. The results (estimated coefficients of CH10 and standard errors) are
shown in the next table, adjusting for different sets of covariates using both the full
sample and the Catholic 8th grade subsample.

Full sample Catholic 8th grade
Adjust for None INCOME & URBAN All None INCOME & URBAN All

Coefficient .73 .37 .32 .60 .48 60
Standard error .08 .09 .09 .13 .15 .15

[QUESTION CONTINUES ON THE NEXT PAGE]
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(b.i) Support your conclusions in part (a) using observations from the new
table.

(b.ii) State a sufficient condition that allows the investigator to inter-
pret the estimated coefficients under the “All” columns in this
table as causal effects. The sufficient condition should be in
terms of the distribution of A = CH10, Y = MATHS12, X =
(INCOME8, URBAN8, MATHS8) and their relevant counterfactuals.

(b.iii) Let (Ai, Yi,Xi), i = 1, . . . , n be the dataset under analysis (n =
11839 in the full sample and n = 1006 in the Catholic 8th grade
subsample). Give the algebraic expression for the inverse probability
weighting estimator of the average treatment effect. Does this
estimator consistently estimate the average treatment effect under
your condition in part (b.ii)?

(c) The investigator now turns to the binary outcome COLL12. Due to concerns
about unmeasured confounding, the investigator proposes to use the following
model as a sensitivity analysis. Let A = CH10, Y = COLL12 and X =
(INCOME8, URBAN8, MATHS8). The investigator assumes that the observations are an
iid sample from the following model

A = I(XTα + U > 0),

Y = I(Aβ + XTγ + V > 0),
(1)

where I is the indicator function and the unobserved variables (U, V ) have a bivariate
normal distribution (

U
V

)
| X ∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
.

The investigator proposes to treat ρ as a sensitivity parameter.

(c.i) Suppose we interpret (1) as a nonlinear structural equation model.
Explain why the no unmeasured confounders assumption no longer
holds when ρ 6= 0.

(c.ii) Let (Ai, Yi,Xi), i = 1, . . . , n be the dataset under analysis. Suppose
the observations are iid. For any given value of ρ, suggests an
estimator β̂ρ of β assuming the model above holds. [You may use
the distribution function Fρ(u, v) = P(U 6 u, V 6 v) without giving
its closed form expression.]

(c.iii) The investigator suggests that by varying ρ between −1 and 1, one
may obtain causal effect estimators with different strengths of the
unmeasured confounder. Explain why this interpretation is logically
flawed.

END OF PAPER
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