MATHEMATICAL TRIPOS Part III

Wednesday, 16 June, 2021 $\,$ 12:00 pm to 2:00 pm

PAPER 220

RANDOM PLANAR GEOMETRY

Before you begin please read these instructions carefully

Candidates have TWO HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper

Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

- (a) Give the definition of a compact \mathbb{R} -tree (\mathcal{T}, d) and the multiplicity of $a \in \mathcal{T}$.
- (b) Suppose that g: [0,1] → ℝ₊ is a continuous function with g(0) = g(1) = 0. Give the definition of the metric space (T_g, d_g) encoded by g. [You do not need to prove that (T_g, d_g) is a compact ℝ-tree and may assume that this is the case for the remainder of the question.]
- (c) Prove or disprove: if (\mathcal{T}, d) is a compact \mathbb{R} -tree then every $a \in \mathcal{T}$ has finite multiplicity.
- (d) Suppose that $f, g: [0,1] \to \mathbb{R}_+$ are continuous functions with f(0) = f(1) = g(0) = g(1) = 0. Prove or disprove: if $(\mathcal{T}_f, d_f) = (\mathcal{T}_g, d_g)$ then f = g.
- (e) Give the definition of the *Hausdorff* and the *Gromov-Hausdorff metrics*. Prove or disprove: the set of compact \mathbb{R} -trees is a compact subset with respect to the Gromov-Hausdorff topology.
- (f) Suppose that (\mathcal{T}, d) is a compact \mathbb{R} -tree. Show that there exists a continuous function $g: [0,1] \to \mathbb{R}_+$ with g(0) = g(1) = 0 so that $(\mathcal{T}_g, d_g) = (\mathcal{T}, d)$. [You may assume without proof that the map which associates g to (\mathcal{T}_g, d_g) is a continuous map from the space of continuous functions $[0,1] \to \mathbb{R}_+$ which take the value 0 at t = 0, 1 with the metric $||f g||_{\infty} := \sup_{t \in [0,1]} |f(t) g(t)|$ to the space of compact metric spaces with the Gromov-Hausdorff metric.]

 $\mathbf{2}$

- (a) Fix $\alpha \in (0,1)$ and suppose that $g: [0,1] \to \mathbb{R}_+$ is an α -Hölder continuous function with g(0) = g(1) = 0.
 - (i) For each $0 \leq s, t \leq 1$ let $m_g(s,t) = \inf_{r \in [s \wedge t, s \vee t]} g(r)$. Show that for every $0 \leq s_1, \ldots, s_n \leq 1$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ we have that

$$\sum_{i,j} \lambda_i \lambda_j m_g(s_i, s_j) \ge 0.$$

- (ii) Give the definition of the *Brownian snake* driven by g and show that for each $\epsilon > 0$ it has an $(\alpha/2 \epsilon)$ -Hölder continuous modification.
- (b) Give the definition of the set Q_n of rooted quadrangulations, and the set Q_n^{\bullet} of rooted and pointed quadrangulations. Explain why $\#Q_n = \#\mathcal{M}_n$ where \mathcal{M}_n is the set of rooted planar maps with n edges by describing the trivial bijection. [You do not need to prove that the trivial bijection is a bijection.]
- (c) Suppose that S_k is a simple symmetric random walk starting from 0. Define the process V_k as follows. We set $V_0 = 0$. Given that V_0, \ldots, V_k have been defined, we let $V_{k+1} = V_k + \xi_k$ if $S_{k+1} S_k = 1$ where $\mathbb{P}[\xi_k = 1] = \mathbb{P}[\xi_k = 0] = \mathbb{P}[\xi_k = -1] = 1/3$ and ξ_k is independent of V_0, \ldots, V_k and all of S. If $S_{k+1} S_k = -1$, then we set $V_{k+1} = 0$ if $S_{k+1} < \min\{S_j : 0 \leq j \leq k\}$ and otherwise $V_{k+1} = V_{\zeta}$ where $\zeta = \max\{j \leq k : S_j = S_{k+1}\}.$
 - (i) For $m \in \mathbb{Z}$ and $m \leq 0$, let G_m be the number of k so that $V_k = m$ when $m = \min\{V_j : 0 \leq j \leq k\}$. Show that $\mathbb{P}[G_m \geq j] = (1 1/6)^{j-1}$ for each $j \geq 1$.
 - (ii) Suppose that (q, e, v_*) is a uniformly random element of \mathcal{Q}_n^{\bullet} where e is the root edge and v_* is the distinguished vertex. Show that there exists a constant C > 0 so that $\mathbb{P}[\deg(v_*) \leq C \log n] \to 1$ as $n \to \infty$. [You may use without proof that if $\sigma = \min\{k \geq 0 : S_k = -1\}$ then $\mathbb{P}[\sigma = 2n + 1] \geq cn^{-3/2}$ where c > 0 is a constant.]

3

- (a) Give the definition of a *compact* H-hull and its half-plane capacity (hcap).
- (b) Suppose that A, C are compact \mathbb{H} -hulls. Prove that $hcap(A) = \lim_{y \to \infty} y \mathbb{E}_{iy}[Im(B(\tau))]$ where B is a complex Brownian motion. Prove also the following.
 - (i) If $A \subseteq C$ then hcap $(A) \leq$ hcap(C).
 - (ii) $hcap(A \cup C) \leq hcap(A) + hcap(C)$.
- (c) Suppose that (A_n) is a sequence of compact \mathbb{H} -hulls. Prove or disprove the following statements. [You may use results about heap stated in lectures provided you state them clearly.]
 - (i) If diam $(A_n) \to \infty$ then hcap $(A_n) \to \infty$.
 - (ii) If $hcap(A_n) \to \infty$ then $diam(A_n) \to \infty$.
- (d) Suppose that γ is an SLE_{κ} in \mathbb{H} from 0 to ∞ . [You may use results about Bessel processes from lectures provided you state them clearly.]
 - (i) Prove that γ almost surely intersects $\partial \mathbb{H} \setminus \{0\}$ if and only if $\kappa > 4$.
 - (ii) Prove that γ almost surely intersects $\partial \mathbb{H}$ infinitely many times if and only if $\kappa > 4$.
 - (iii) Prove that the set $\{\gamma(t) : t \in \mathbb{R}_+, \gamma(t) \in \partial \mathbb{H}\}$ almost surely has zero Lebesgue measure if $\kappa \in (0, 8)$. [You may assume that if $\kappa \in (4, 8)$ then $\mathbb{P}[\tau_x = \tau_y] > 0$ for all 0 < x < y where for each $x \in \mathbb{R}$ we let τ_x be the first time that γ disconnects x from ∞ .]

 $\mathbf{4}$

- (a) State the conformal Markov property. Show that if (g_t) is a Loewner evolution driven by U_t which satisfies the conformal Markov property then there exists $\kappa \ge 0$ and a Brownian motion B_t so that $U_t = \sqrt{\kappa}B_t$.
- (b) State the *locality property* for SLE_6 .
- (c) Prove that SLE₆ satisfies the locality property. [You may assume the following facts. Suppose that (A_t) is a non-decreasing family of compact H-hulls which are locally growing, parameterized by half-plane capacity with A₀ = 0 and with Loewner driving function U and Loewner evolution (g_t). Let D ⊆ H be a simply connected domain with 0 on its boundary and let ψ: D → H be a conformal transformation with ψ(0) = 0. Assume that T > 0 is such that A_T ⊆ D, let A_t = ψ(A_t), and g_t = g_{At} for t ∈ [0, T]. Then the maps (g_t) satisfy ∂_tg_t(z) = ∂_tã(t)/(g_t(z) - Ũ_t), g₀(z) = z, where Ũ_t = ψ_t(U_t), ψ_t = g_t ∘ψ ∘ g_t⁻¹ and ã(t) = ∫₀^t 2(ψ'_s(U_s))²ds for t ∈ [0, T]. You may also assume without proof the formula ∂_tψ_t(U_t) = -3ψ''_t(U_t).]
- (d) Suppose that γ_1 is an SLE₆ in \mathbb{H} from -1 to ∞ and $\tau_1 = \inf\{t \ge 0 : \gamma_1(t) \notin B(-1,1)\}$. Given $\gamma_1|_{[0,\tau_1]}$, let γ_2 be an SLE₆ in the unbounded component of $\mathbb{H} \setminus \gamma_1([0,\tau_1])$ from 1 to ∞ and let $\tau_2 = \inf\{t \ge 0 : \gamma_2(t) \notin B(1,1)\}$. Show that given $\gamma_2|_{[0,\tau_2]}$, the conditional law of $\gamma_1|_{[0,\tau_1]}$ is that of an SLE₆ in the unbounded component of $\mathbb{H} \setminus \gamma_2([0,\tau_2])$ from -1 to ∞ stopped upon leaving B(-1,1).
- (e) Suppose that x > 0 and γ is an SLE₆ in \mathbb{H} from 0 to x. Let τ_x be the first time that γ disconnects x from ∞ . Show that $\gamma|_{[0,\tau_x]}$ has the law of an SLE₆ in \mathbb{H} from 0 to ∞ stopped at the first time that it disconnects x from ∞ .

END OF PAPER

Part III, Paper 220