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(a) Give the definition of a compact R-tree (T , d) and the multiplicity of a ∈ T .

(b) Suppose that g : [0, 1] → R+ is a continuous function with g(0) = g(1) = 0. Give the
definition of the metric space (Tg, dg) encoded by g. [You do not need to prove that
(Tg, dg) is a compact R-tree and may assume that this is the case for the remainder of
the question.]

(c) Prove or disprove: if (T , d) is a compact R-tree then every a ∈ T has finite multiplicity.

(d) Suppose that f, g : [0, 1] → R+ are continuous functions with f(0) = f(1) = g(0) =
g(1) = 0. Prove or disprove: if (Tf , df ) = (Tg, dg) then f = g.

(e) Give the definition of the Hausdorff and the Gromov-Hausdorff metrics. Prove or
disprove: the set of compact R-trees is a compact subset with respect to the Gromov-
Hausdorff topology.

(f) Suppose that (T , d) is a compact R-tree. Show that there exists a continuous function
g : [0, 1] → R+ with g(0) = g(1) = 0 so that (Tg, dg) = (T , d). [You may assume
without proof that the map which associates g to (Tg, dg) is a continuous map from the
space of continuous functions [0, 1] → R+ which take the value 0 at t = 0, 1 with the
metric ‖f − g‖∞ := supt∈[0,1] |f(t) − g(t)| to the space of compact metric spaces with
the Gromov-Hausdorff metric.]
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(a) Fix α ∈ (0, 1) and suppose that g : [0, 1] → R+ is an α-Hölder continuous function
with g(0) = g(1) = 0.

(i) For each 0 6 s, t 6 1 let mg(s, t) = infr∈[s∧t,s∨t] g(r). Show that for every
0 6 s1, . . . , sn 6 1 and λ1, . . . , λn ∈ R we have that

∑

i,j

λiλjmg(si, sj) > 0.

(ii) Give the definition of the Brownian snake driven by g and show that for each
ε > 0 it has an (α/2− ε)-Hölder continuous modification.

(b) Give the definition of the set Qn of rooted quadrangulations, and the set Q•n of rooted
and pointed quadrangulations. Explain why #Qn = #Mn where Mn is the set of
rooted planar maps with n edges by describing the trivial bijection. [You do not need
to prove that the trivial bijection is a bijection.]

(c) Suppose that Sk is a simple symmetric random walk starting from 0. Define the
process Vk as follows. We set V0 = 0. Given that V0, . . . , Vk have been defined, we let
Vk+1 = Vk + ξk if Sk+1 − Sk = 1 where P[ξk = 1] = P[ξk = 0] = P[ξk = −1] = 1/3
and ξk is independent of V0, . . . , Vk and all of S. If Sk+1 − Sk = −1, then we
set Vk+1 = 0 if Sk+1 < min{Sj : 0 6 j 6 k} and otherwise Vk+1 = Vζ where
ζ = max{j 6 k : Sj = Sk+1}.

(i) For m ∈ Z and m 6 0, let Gm be the number of k so that Vk = m when
m = min{Vj : 0 6 j 6 k}. Show that P[Gm > j] = (1− 1/6)j−1 for each j > 1.

(ii) Suppose that (q, e, v∗) is a uniformly random element of Q•n where e is the root
edge and v∗ is the distinguished vertex. Show that there exists a constant C > 0
so that P[deg(v∗) 6 C log n] → 1 as n → ∞. [You may use without proof that
if σ = min{k > 0 : Sk = −1} then P[σ = 2n + 1] > cn−3/2 where c > 0 is a
constant.]
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(a) Give the definition of a compact H-hull and its half-plane capacity (hcap).

(b) Suppose that A,C are compact H-hulls. Prove that hcap(A) = limy→∞ yEiy[Im(B(τ))]
where B is a complex Brownian motion. Prove also the following.

(i) If A ⊆ C then hcap(A) 6 hcap(C).

(ii) hcap(A ∪ C) 6 hcap(A) + hcap(C).

(c) Suppose that (An) is a sequence of compact H-hulls. Prove or disprove the following
statements. [You may use results about hcap stated in lectures provided you state them
clearly.]

(i) If diam(An)→∞ then hcap(An)→∞.

(ii) If hcap(An)→∞ then diam(An)→∞.

(d) Suppose that γ is an SLEκ in H from 0 to ∞. [You may use results about Bessel
processes from lectures provided you state them clearly.]

(i) Prove that γ almost surely intersects ∂H \ {0} if and only if κ > 4.

(ii) Prove that γ almost surely intersects ∂H infinitely many times if and only if
κ > 4.

(iii) Prove that the set {γ(t) : t ∈ R+, γ(t) ∈ ∂H} almost surely has zero Lebesgue
measure if κ ∈ (0, 8). [You may assume that if κ ∈ (4, 8) then P[τx = τy] > 0 for
all 0 < x < y where for each x ∈ R we let τx be the first time that γ disconnects
x from ∞.]
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(a) State the conformal Markov property. Show that if (gt) is a Loewner evolution driven
by Ut which satisfies the conformal Markov property then there exists κ > 0 and a
Brownian motion Bt so that Ut =

√
κBt.

(b) State the locality property for SLE6.

(c) Prove that SLE6 satisfies the locality property. [You may assume the following facts.
Suppose that (At) is a non-decreasing family of compact H-hulls which are locally
growing, parameterized by half-plane capacity with A0 = 0 and with Loewner driving
function U and Loewner evolution (gt). Let D ⊆ H be a simply connected domain with
0 on its boundary and let ψ : D → H be a conformal transformation with ψ(0) = 0.
Assume that T > 0 is such that AT ⊆ D, let Ãt = ψ(At), and g̃t = g

Ãt
for t ∈ [0, T ].

Then the maps (g̃t) satisfy ∂tg̃t(z) = ∂tã(t)/(g̃t(z)−Ũt), g̃0(z) = z, where Ũt = ψt(Ut),
ψt = g̃t◦ψ◦g−1t and ã(t) =

∫ t
0 2(ψ′s(Us))

2ds for t ∈ [0, T ]. You may also assume without
proof the formula ∂tψt(Ut) = −3ψ′′t (Ut).]

(d) Suppose that γ1 is an SLE6 in H from −1 to∞ and τ1 = inf{t > 0 : γ1(t) /∈ B(−1, 1)}.
Given γ1|[0,τ1], let γ2 be an SLE6 in the unbounded component of H\γ1([0, τ1]) from 1
to∞ and let τ2 = inf{t > 0 : γ2(t) /∈ B(1, 1)}. Show that given γ2|[0,τ2], the conditional
law of γ1|[0,τ1] is that of an SLE6 in the unbounded component of H \ γ2([0, τ2]) from
−1 to ∞ stopped upon leaving B(−1, 1).

(e) Suppose that x > 0 and γ is an SLE6 in H from 0 to x. Let τx be the first time that
γ disconnects x from ∞. Show that γ|[0,τx] has the law of an SLE6 in H from 0 to ∞
stopped at the first time that it disconnects x from ∞.
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