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1 Consider an oversimplified model of the distribution of stars in our Galaxy. Suppose
at distance r > 0 (in units of parsecs) from Earth, the spatial density of stars is

ρ(r) = ρ0 exp(−r/r0),

where ρ0 is the spatial density (in units of stars per cubic parsec) at r = 0, and r0 > 0 is a
scale parameter. A satellite observes a large simple random sample of N stars for a year
and measures the parallax angle αs (in units of arcsec) of each star, labelled s = 1, . . . , N .
You have a catalog of the parallax measurements α = {αs} to these N observed stars.
Assume that the measurement errors of the parallaxes are negligible. In each part below,
show all steps.

(a) Derive the probability density P (rs) of the distance rs > 0 of a randomly selected
star s in our Galaxy.

(b) Derive the probability density P (αs) of the star’s stellar parallax αs > 0. Show that

P (αs) = C

(
αs
α0

)γ
e−α0/αs .

Define C, γ, and α0 in terms of previous quantities.

(c) Find the maximum likelihood estimate r̂0 for r0, using the parallax measurements α
of the sample of N stars in your catalog. Evaluate the Fisher information. Compute
the bias and variance of the estimator r̂0 and compare the latter against the Cramér-
Rao lower bound.

(d) Henceforth, suppose that a knowledgeable astronomer informs you that, due to
the limitations of the satellite, it could not observe stars with apparent fluxes
(brightnesses at Earth) fs fainter than a known flux limit fmin, and therefore those
stars (with fs < fmin) were not included in your catalog. However, any sampled
stars with brighter fluxes (fs > fmin) are guaranteed to be included in your catalog.
Let Is be an indicator variable with value 1 if star s is observed, and 0 if not.
Suppose that all stars have the same known intrinsic luminosity L0. Derive and
fully simplify the normalised probability density P (rs| Is = 1) of the distance of a
random observed star s included your catalog.

(e) Now suppose that each star has a different intrinsic luminosity drawn from a
Gaussian population distribution with known mean L0 and known variance σ2L:
Ls ∼ N(L0, σ

2
L). Consider a random star s of unknown luminosity at true distance rs

that would have been observed in the absence of the selection effect (i.e. if fmin = 0).
Derive P (Is = 1| rs), the probability of observing this star with the selection effect
(fmin > 0). You may express this in terms of the unit normal cumulative distribution
function Φ(x) =

∫ x
−∞ (2π)−1/2 exp(−t2/2) dt. At what distance rs is this selection

probability equal to 0.5?
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2 Many astronomical time-domain phenomena exhibit periodicity. Consider a
Gaussian process (GP) on the plane x ∈ R2 with mean level µ and a squared exponential
kernel: g(x) ∼ GP(µ, kSE(x,x′)), where

kSE(x,x′) = A2 exp

(
−|x− x

′|2
2l2

)
.

Now consider the process f(t) = g(u(t)) restricted to the unit circle:

u(t) = (sinωt, cosωt) .

(a) Derive and fully simplify the covariance kθ(t, t′) = Cov[f(t), f(t′)] between f(t) and
f(t′), where θ = (A,ω, l). Is this covariance kernel stationary? What is the period T
of functions drawn from a GP with this kernel? Justify your answer. You may find
the following identities useful:

sinα− sinβ = 2 sin

(
α− β

2

)
cos

(
α+ β

2

)

cosα− cosβ = −2 sin

(
α+ β

2

)
sin

(
α− β

2

)
.

(b) Henceforth, consider a variable star whose brightness f(t) ∼ GP(µ, kθ(t, t′)) varies
in time as a realisation of a GP with prior mean µ and covariance function kθ(t, t′).
An astronomer regularly observes the star every ∆t days. Let t = (t1, . . . , tN )T be
the grid of the first N observation times ti, for i = 1, . . . , N . At each time ti, the
astronomer records yi, an unbiased measurement of the latent brightness fi = f(ti),
with Gaussian measurement error with variance σ2i . Let y = (y1, . . . , yN )T be the
vector of observed brightnesses, and assume all errors are independent. Derive the
likelihood P (y| t;µ,θ). [If you have not solved part (a), you may assume you can
numerically evaluate the kernel kθ(t, t′)].

(c) Given a proper prior P (µ,θ), write down an expression for the posterior P (µ,θ|y, t),
up to the normalisation constant. Briefly describe an MCMC algorithm that in
principle will enable you to generate samples from this posterior. Prove that this
algorithm respects detailed balance with the posterior as the stationary distribution.
Briefly describe how you would in practice implement and evaluate the MCMC to
estimate the posterior mean of the period of the variable star.

(d) Suppose you have successfully collected M independent samples {µm,θm}, m =
1, . . . ,M , from the posterior. Denote the future brightness at the next observation
time t∗ ≡ tN+1 = tN + ∆t as f∗ = f(t∗). How would you compute the posterior
predictive mean and variance of the future f∗ given the observed past data?

(e) Suppose θ are known, µ is unknown, and l � ∆t/T � 1/N . Using an improper
flat prior on µ, derive an approximate posterior density P (µ|y, t;θ). What are the
posterior mean and variance? Derive an approximate probability density of future f∗

given past data, P (f∗| t∗;y, t,θ), marginalising over the uncertainty in µ. What are
the posterior predictive mean and variance of f∗? Simplify for the case of σi = 0.
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3 Suppose we have a sample of N > 3 supernovae in the nearby universe, labelled
s = 1, . . . , N . For each supernova s, we obtain a measurement Ds of the supernova’s latent
absolute magnitude Ms. The measurement, however, is perturbed by zero-mean Gaussian
error with known variance σ2: Ds|Ms ∼ N(Ms, σ

2). Assume all measurement errors are
independent. We assume that the latent absolute magnitudes are independently drawn
from a Gaussian population distribution: Ms ∼ N(M0, τ

2), with population mean M0 and
population variance τ2.

(a) Suppose you knew M0 and τ2. Using the population distribution as a prior, derive
the posterior density P (Ms|M0, τ

2, Ds) for an individual s. What is the posterior
mean estimate M̃s of Ms? Express this using b = τ2/(τ2 + σ2). What is the posterior
variance?

(b) Regard your posterior mean M̃s as a point estimate of the latent Ms. Compute
and fully simplify the mean squared error E[(M̃s −Ms)

2] of this estimate, where the
total expectation is taken over both the measurement distribution and the population
distribution. Compare this to the mean squared error E[(Ds−Ms)

2] of the individual
estimate Ds. Which is smaller?

(c) Derive and fully simplify the probability density P (Ds|M0, τ
2) of the estimate Ds

given the population M0 and τ2. Next, suppose we know τ2 but not M0. Henceforth,
adopt an improper flat prior on M0. Using the full sample of objects, derive the
posterior density P (M0| τ2,D), where D is the vector of values {Ds}. What are the
posterior mean and variance?

(d) Now suppose we know neither M0 nor τ2. Henceforth, adopt an improper power-
law prior P (τ2) ∝ (τ2)k on τ2 > 0 (and zero for τ2 < 0), where the exponent k
is restricted to integer values. Derive an expression for the unnormalised posterior
density P (τ2|D). For what values of k can the posterior be normalised? Comment
on the suitability of the choice k = 0.

(e) For a general k consistent with the above constraints, write down the full joint
posterior density P (θ|D) of all parameters θ = ({Ms},M0, τ

2), up to a normalisation
constant. Construct a Gibbs sampling algorithm that generates an MCMC to sample
this posterior density by deriving a sequence of proposed moves that are always
accepted. Specify the order of your sequence. Assume you have access to algorithms
that generate random draws from the following probability densities:

i) Gaussian: N(x| a, b2),
ii) Inverse gamma: Inv-Gamma(x| a, b) ∝ x−(a+1) exp(−b/x), x > 0.

Suppose at the start of cycle t, θt ∼ P (θ|D). Derive, up to a normalisation constant,
the probability density of θt+1 after a full update of all parameters.
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4 Consider a Bayesian inference problem with observed data y, parameter θ, likeli-
hood function L(θ) = P (y| θ), and a proper prior π(θ). For parts (a)-(e) below, assume
the specific case wherein y and θ are scalars and the likelihood and prior are chosen to
be univariate Gaussian: P (y| θ) = N(y| θ, σ2) and π(θ) = N(θ| 0, τ2). The measurement
variance σ2 and the prior variance τ2 are known. In each part below, show all steps.

(a) Derive the normalised posterior density P (θ| y). What are the posterior mean θ̃ and
the posterior variance σ2θ?

(b) Derive the evidence or marginal likelihood Z.

(c) Evaluate the posterior expectation of the log-likelihood function: Eθ|y[lnL(θ)], where
the expectation is taken with respect to the posterior density P (θ| y). This provides
a measure of model fit to the data.

(d) The Kullback-Leibler divergence, or relative entropy, between two distributions P (θ)
and Q(θ),

DKL[P (θ) ||Q(θ)] =

∫
P (θ) ln

[
P (θ)

Q(θ)

]
dθ,

provides a measure of discrepancy between the two distributions. In particular, the K-
L divergence DKL[P (θ|y) ||π(θ)] measures the information compression moving from
the prior to the posterior. Evaluate DKL[P (θ|y) ||π(θ)].

(e) In the specific Gaussian case, does the following equality hold?

lnZ = Eθ|y[lnL(θ)]−DKL[P (θ|y) ||π(θ)]

Verify your answer explicitly using your results from parts (b), (c), and (d).

(f) Does the equality in part (e) hold in the general case for arbitrary, but valid, likelihoods
L(θ) and proper priors π(θ)? Prove or disprove.

END OF PAPER
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