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1 Mixing times of Markov chains
Let Q be an irreducible and reversible transition matrix on the finite state space S

with invariant distribution π. Let X be a Markov chain with matrix P = (Q+ I)/2.

(a) Define the relaxation time trel of P . State without proof the spectral decompos-
ition of P t for every t ∈ N.

(b) Prove that for all x

∞∑

k=0

(P k(x, x)− π(x)) 6 e

e− 1

dtrele∑

k=0

(P k(x, x)− π(x)).

(c) Let t
(2)
mix(x, ε) be the L2 ε-mixing time starting from x, i.e.

t
(2)
mix(x, ε) = min

{
t > 0 :

∥∥∥∥
P t(x, ·)
π(·) − 1

∥∥∥∥
2,π

6 ε

}
.

Write τx = inf{t > 0 : Xt = x} for the first hitting time of x. Prove that

t
(2)
mix(x, 1/4) 6 8Eπ[τx] .

[You may use the identity π(x)Eπ[τx] =
∑∞

k=0(P
k(x, x)− π(x)) without proof.]

(d) Using the identity π(x)Eπ[τx] =
∑∞

k=0(P
k(x, x)− π(x)) or otherwise, show that

there exists a universal constant C (independent of the chain) so that for all a

Ea



t
(2)
mix(a,1/4)−1∑

k=0

1(Xk = a)


 6 C · Ea



dtrele∑

k=0

1(Xk = a)


 .

[Hint: A value of C that works is 9e/(e− 1).]
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2 Mixing times of Markov chains
(a) Define what it means for a family of Markov chains to exhibit pre-cutoff.

Let X(n) be a sequence of irreducible aperiodic Markov chains with relaxation times

t
(n)
rel and 1/4-total variation mixing times t

(n)
mix. Suppose that t

(n)
mix → ∞ as n → ∞ and

t
(n)
mix/t

(n)
rel is bounded from above. Prove that there is no pre-cutoff.

[You may use results from the course relating the total variation mixing time and
the relaxation time without proof.]

(b) The purpose of this part is to prove that the converse to the above is not true,

i.e. if t
(n)
mix/t

(n)
rel is unbounded, this does not imply cutoff.

Let Pn be a sequence of transition matrices with invariant distributions πn and

t
(n)
rel /t

(n)
mix → 0 as n→∞ and with a cutoff. [If you wish, you may work with Pn being the

transition matrix of lazy simple random walk on the hypercube {0, 1}n, for which recall

that t
(n)
mix/(n log n/2) → 1 as n → ∞ and t

(n)
rel = n.] Let an = (t

(n)
rel t

(n)
mix)−1/2 and define a

new transition matrix for all x, y

P̃n(x, y) = (1− an)Pn(x, y) + anπn(y).

(i) Show that
‖P̃ t

n(x, ·)− πn‖TV = (1− an)t · ‖P t
n(x, ·)− πn‖TV.

(ii) Deduce that the family (P̃n) does not exhibit pre-cutoff.

(iii) Let t̃
(n)
rel and t̃

(n)
mix be the relaxation time and 1/4-total variation mixing time

respectively of P̃n. Show that

t̃
(n)
rel

t̃
(n)
mix

→ 0 as n→∞.
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3 Mixing times of Markov chains
(a) Let P be an irreducible transition matrix on the finite set S and suppose it is

reversible with respect to the invariant distribution π.

Suppose that P̃ is another irreducible transition matrix on S reversible with respect
to the invariant distribution π̃. Let E = {(x, y) : P (x, y) > 0} and Ẽ = {(x, y) : P̃ (x, y) >
0}. For every (x, y) set Px,y for the set of paths from x to y and let νxy be a probability
measure on Px,y. Let

B = max
e∈E


 1

Q(e)

∑

(x,y)∈Ẽ

Q̃(x, y)
∑

Γ∈Px,y :e∈Γ

νxy(Γ)|Γ|


 ,

where Q(x, y) = π(x)P (x, y) and Q̃(x, y) = π̃(x)P̃ (x, y). Show that the spectral gaps γ
and γ̃ of P and P̃ respectively satisfy

γ̃ 6
(

max
x

π(x)

π̃(x)

)
Bγ,

[You may use results on the comparison of spectral gaps via comparison of Dirichlet forms
without proof.]

(b) Let G = (V,E) be a transitive graph on n vertices with vertex degree d and
diameter ∆. Let γ be the spectral gap of simple random walk on G.

(i) For each x, y ∈ V let P∗x,y be the set of shortest paths from x to y and let νxy be
the uniform measure on P∗x,y. For e ∈ E and x ∈ V we define

f(e) =
∑

x,y

∑

Γ∈P∗
x,y

1(e ∈ Γ)

|P∗x,y|
and f̃(x) =

∑

y∼x
f(x, y).

Using transitivity show that f̃ is a constant function and then show that for every
e ∈ E

f(e) 6 2n ·∆.

(ii) By comparing the transition matrix P of simple random walk on G to the matrix
defined via P̃ (x, y) = π(y) or othewise, prove that

1

γ
6 2 · d ·∆2.

[You may use results from the course as long as they are stated clearly.]
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4 Mixing times of Markov chains
Consider the following Markov chain on the hypercube {0, 1}n: for x = (x1, . . . , xn)

and x′ ∈ {(0, x1, . . . , xn−1), (1, x1, . . . , xn−1)}

P (x, x′) =
1

3

while for x′ ∈ {(0, x3, . . . , xn, x1), (1, x3, . . . , xn, x1)} we have

P (x, x′) =
1

6
.

In words, when the current state is x = (x1, . . . , xn), then first we either shift the vector
to the right with probability 2/3 or to the left with probability 1/3. Then we refresh the
bit in the first coordinate to 0 or 1 equally likely.

(a) Check that π(x) = 1/2n for all x ∈ {0, 1}n is the invariant distribution.

(b) Show that this process exhibits total variation cutoff around time 3n.

[Hint: Prove separately an upper and a lower bound on tmix(ε). You may use the
following facts about a random walk: if X is a random walk on Z with P (i, i+ 1) = 2/3 =
1− P (i, i− 1) and τx = inf{t > 0 : Xt = x} for x ∈ Z, then for all a, b > 0

E0[τa] = 3a and Var(τa) = 24a,

E0[τa ∧ τ−b] = 3a− 3(a+ b) · 1− 2−a

2b − 2−a
and

Var(τa ∧ τ−b) 6 24a+ 3(a+ b)E0[τa ∧ τ−b] ·
1− 2−a

2b − 2−a
.]

END OF PAPER
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