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1 Define what is meant by saying that a mean-zero random variable X is sub-Gaussian
with parameter σ2 > 0. Prove that such a random variable X satisfies

max
{
P(X > x),P(X 6 −x)

}
6 e−x

2/(2σ2)

for all x > 0. Prove further that it also satisfies

Var(X) 6 σ2.

What is meant by saying that a mean-zero random variable X is sub-Gamma on the right
tail with variance factor σ and scale factor c? State Bernstein’s inequality.

Let X1, . . . , Xn be independent, mean-zero random variables that are sub-Gaussian
with parameter σ2, and let a1, . . . , an ∈ R. Let a+ :=

(
max(ai, 0)

)n
i=1

and a− :=
(
max(−ai, 0)

)n
i=1

, and for u = (u1, . . . , un)> ∈ Rn, let ‖u‖2 :=
(∑n

i=1 u
2
i

)1/2
and

‖u‖∞ := maxi=1,...,n |ui|. Prove that

P
(

1

n

n∑

i=1

{
aiX

2
i − E(aiX

2
i )
}
> x

)
6 exp

( −n2x2
2(σ4v + cnσ2x)

)

for all x > 0, where v := 16(‖a+‖22 + ‖a−‖22) and c := max(2‖a+‖∞, ‖a−‖∞).
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2 Let F denote the set of all differentiable densities on R, and let X1, . . . , Xn be
independent, real-valued random variables with density f ∈ F . In the context of kernel
density estimation, define what is meant by a kernel and a kernel density estimator
f̂n ≡ f̂n,h,K of f with bandwidth h and kernel K. Define what it means for a kernel
to be of order ` ∈ N.

Let K be a continuously differentiable kernel that vanishes outside [−1, 1], and
consider f̂ ′n as an estimator of f ′. Derive a bound of the form

∫ ∞

−∞
Var f̂ ′n(x) dx 6 1

nhα
C1(K),

where the universal constant α > 0 and the function C1(K) of the kernel should be
specified.

For β, L > 0, define the Nikol’ski class of functions N (β, L). Prove that if f ∈ F is
such that f ′ ∈ N (β, L), and if K is of order ` := dβe, then

∫ ∞

−∞
Bias2 f̂ ′n(x) dx 6 C2(β, L,K)hγ ,

where the universal constant γ > 0 and function C2(β, L,K) should be specified. [You may
assume Taylor’s theorem with an appropriate remainder term, as well as the generalised
Minkowski inequality.]

Define the Mean Integrated Squared Error (MISE) of f̂ ′n,h,K as an estimator of f ′,
and determine δ > 0, depending only on β, such that

inf
h>0

sup
f∈F :f ′∈N (β,L)

MISE(f̂ ′n,h,K) 6 C3(β, L,K)

nδ

for all n ∈ N. [You need not specify C3(β, L,K).]

Comment briefly on the relative difficulty of estimating f and f ′ with respect to the
Mean Integrated Squared Error criterion when they each belong to N (β, L).
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3 Consider the fixed design nonparametric regression model

Yi = m(xi) + εi,

where ε1, . . . , εn are independent, with E(εi) = 0 and Var(εi) = 1 for i = 1, . . . , n. Define
the local polynomial estimator m̂n(·; p, h,K) of degree p with bandwidth h and kernel
K. Under a positive definiteness condition that you should specify and then assume
throughout, show that it is a linear function of Y = (Y1, . . . , Yn)>.

Show that the local linear estimator m̂n(·; 1, h,K) can be expressed in the form

m̂n(x; 1, h,K) =
1

nh

n∑

i=1

s2(x)− s1(x)(xi − x)

s2(x)s0(x)− s21(x)
K

(
xi − x
h

)
Yi,

for functions sr(x) ≡ sr,h,K(x;x1, . . . , xn) with r ∈ {0, 1, . . .} that you should specify.

Now suppose that m(x) = ex, that xi = i/n for i = 1, . . . , n, and that K(u) =
1{|u|61}/2. Writing sr := sr(0), for r ∈ {0, 1, 2, 3} derive bounds on

∣∣sr − hr

2(r+1)

∣∣, and

hence show that there exists a universal constant c > 0 such that s2s0 − s21 > ch2 for all
h > 0 and n ∈ N with nh > 32. [You may use the facts that

∑m
i=1 i

2 = m(m+1)(2m+1)/6
and

∑m
i=1 i

3 = m2(m+ 1)2/4 for m ∈ N.]

Hence or otherwise prove that there exists a universal constant C > 0 such that,
provided nh > 32, we have

∣∣Bias m̂n(0; 1, h,K)
∣∣ 6 Ch2.

What is the corresponding upper bound for
∣∣Bias m̂n(0; 0, h,K)

∣∣? [You may assume the
form of the Nadaraya–Watson estimator.]
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4 Define the total variation distance between two probability measures P and Q on
a measurable space (X ,A). When P is absolutely continuous with respect to Q, define
the Kullback–Leibler divergence from Q to P . State Pinsker’s inequality. State and prove
Le Cam’s two point lemma.

For β, L > 0, define the Hölder class of functions H(β, L) on [0, 1]. For i = 1, . . . , n,
let

Yi = m(xi) + εi,

where xi = i/n and where ε1, . . . , εn are independent N(0, 1) random variables. Prove
that there exists c > 0, depending only on β, such that

inf
x0∈[0,1]

inf
θ̂n∈Θ̂

sup
m∈H(β,L)

E
[{
θ̂n(Y1, . . . , Yn)−m(x0)

}2] > cmax

{
1

n
,min

(
L2/(2β+1)

n2β/(2β+1)
, 1

)}
,

where Θ̂ denotes the set of Borel measurable functions from Rn to R. [You may assume
the form of the Kullback–Leibler divergence between two normal distributions, and the
fact that the function K(u) := e−1/(1−u2)

1{|u|61} is infinitely differentiable on R with

‖K(r)‖∞ <∞ for every non-negative integer r.]

END OF PAPER
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