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1 Let X ∈ Rn×p be a design matrix with rows x1, . . . , xn, and (y1, . . . , yn) ∈ {−1, 1}n
a vector of responses. Let β̂ be a solution to the following `1-penalised logistic regression
problem

minimise
β∈Rp

1

n

n∑

i=1

[−yixTi β + log(1 + exp(yix
T
i β))] + λ‖β‖1.

(a) Derive the KKT conditions for the problem above. [You may cite any result
from the course.]

(b) Prove that Xβ̂ is unique.

(c) Define

E =

{
j ∈ {1, . . . , p} :

∣∣∣
n∑

i=1

−yixij
1 + exp(yixTi β)

∣∣∣ = nλ

}
.

Prove that β̂ is unique if rank(XE) = |E|.
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2 Let X ∈ Rn×p, where the columns of X have mean 0 and `2 norm
√
n, and consider

a normal linear model with responses Y = Xβ0 +ε with ε ∼ Nn(0, σ2I). Suppose that the
predictors are partitioned into disjoint blocks B1, . . . , BK with B1∪ · · ·∪BK = {1, . . . , p},
and let b(j) denote the block to which the jth predictor belongs. Predictors in different
blocks are nearly orthogonal with

1

n
|XT

j X`| <
η

32p
if b(j) 6= b(`),

for some constant η > 0. Furthermore, the predictors within a given block are linearly
independent, and for any block Bk with k = 1, . . . ,K, the smallest eigenvalue of
n−1XT

Bk
XBk

is greater than η.

(a) Let S ⊆ {1, . . . , p} and Σ̂ = n−1XTX. Define the compatibility constant φ2
Σ̂

(S).

(b) Prove that for any S ⊆ {1, . . . , p},

φ2
Σ̂

(S) > η

2
.

(c) Let β̂ be a Lasso estimator with parameter λ = Aσ
√

log p/n for some A > 0.

Show that with probability at least 1− 2p−(A2/8−1), we have

1

n
‖X(β̂ − β0)‖22 + λ‖β̂ − β0‖1 6 32A2σ2 log p

η

s

n

where s is the number of non-zero entries in β0.

[Throughout this question, you may use any result from the course without proof
provided it is clearly stated.]

3 (a) Let A ∈ Rd×p have i.i.d. Uniform({−1, 1}) entries. Fixing u ∈ Rp, prove that
for t ∈ (0, 1),

P
(∣∣∣∣
‖Au‖22
d‖u‖22

− 1

∣∣∣∣ > t

)
6 2e−dt2/136.

[You may cite any result from the lecture notes without proof.]

(b) Suppose we have data u1, . . . , un ∈ Rp, with p large and n > 2. Show that for
a given t, ε ∈ (0, 1) and d > 272 log(n/

√
ε)/t2, each data point may be compressed down

through ui 7→ Aui/
√
d := wi whilst approximately preserving the distances between the

points:

P
(
1− t 6 ‖wi − wj‖22

‖ui − uj‖22
6 1 + t for all i, j ∈ {1, . . . , n}, i 6= j

)
> 1− ε.
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4 (a) Let X be a finite set. Let (g(x))x∈X be a stochastic process with Eg(x) = 0
and Eg2(x) <∞ for all x ∈ X . Let k : X × X → R be defined by

k(x, x′) = exp

(
−Var(g(x)− g(x′))

2η2

)
,

for some constant η2 > 0. Prove that k is a positive definite kernel. [You need not prove
basic closure properties of kernels.]

(b) Let (xi, yi) ∈ X × R for i = 1, . . . , n. Suppose that yi = f0(xi) + εi for each
i = 1, . . . , n where ε1, . . . , εn are i.i.d. N(0, σ2), and f0 is an arbitrary function. Define
the kernel ridge regression estimator f̂λ.

Suppose that the kernel matrix K with Ki,j = k(xi, xj) has eigenvalues d1 > d2 >
· · · > dn > 0. Prove that

E

{
n∑

i=1

(f0(xi)− f̂λ(xi))
2

}
6 σ2

n∑

i=1

d2i
(di + λ)2

+
λ

4
fTK−1f

where f = (f0(x1), . . . , f
0(xn))T . Describe the value of f which maximises the upper

bound in this inequality over all vectors with unit Euclidean norm.

5 Let x1, . . . , xn be i.i.d. random vectors with a Nd(0,Σ) distribution, where Σ has
eigenvalues 1, 1/2, 1/3, . . . , 1/d.

Given fixed vectors a1, . . . , aL in the unit sphere Sd−1, suppose we are interested
in estimating v` = Var(aT` x1) for each ` = 1, . . . , L. Find estimators v̂1, . . . , v̂` such that
there is a constant C, such that whenever log d+ 1 + δ 6 n and δ > 0,

P

(
(v` − v̂`)2 6 C

√
log d+ 1 + δ

n
for all ` ∈ {1, . . . , L}

)
> 1− e−δ.

Prove this inequality, stating carefully any necessary result from the lecture notes.
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6 (a) A positive semi-definite matrix Σ ∈ Rp×p is said to be η-invertible if there is an
approximate inverse matrix Θ such that

max
j,k
|(ΣΘ− I)j,k| 6 η. (1)

Show that any matrix Σ is 1-invertible. Show that finding the smallest value of η such
that Σ is η-invertible is a convex optimisation problem, i.e. minimising a convex function
over a convex set.

(b) Let Y = Xβ0 + ε where X is a design matrix in Rn×p, and ε ∼ Np(0, I). Define

the Lasso estimator β̂ with regularisation parameter λ.

Suppose that using a convex optimisation algorithm, we establish that Σ̂ = XTX/n
is
√

log p/n-invertible, with the approximate inverse Θ̂. Let

b̂ = β̂ + Θ̂TXT (Y −Xβ̂)/n.

Show that it is possible to write

√
n(b̂− β0) = W + ∆

where W has a normal distribution which you must specify, and ‖∆‖∞ 6 ρ(n, p)‖β̂−β0‖1
for some function ρ(n, p) which you must specify.

(c) Take λ = A
√

log p/n for some A > 0. Consider a sequence of models with
increasing dimensions n and p, and deterministic design matrices; state assumptions which
guarantee that P(‖∆‖∞ > cs log p/

√
n)→ 0 as n→∞, where s is the number of nonzero

entries in β0 and c is a constant. [You may cite any result from the lecture notes.]

END OF PAPER
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