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1

Let f : R+ → R be of finite variation and right-continuous.

(a) Show that there exist non-decreasing right-continuous functions g and h such that
f = g − h.

(b) Suppose α : R+ → R is continuous. Show that

2n∑

k=1

α(t
(n)
k−1)(f(t

(n)
k )− f(t

(n)
k−1))→

∫ 1

0
α(s)df(s) as n→∞

where t
(n)
k = k2−n.

(c) Suppose that f is continuous. Show that

2

∫ t

0
f(s)df(s) = f(t)2.
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2 Let X be a continuous process adapted to a filtration satisfying the usual conditions
such that X0 = 0. For each n > 1 and t > 0, let

[X]
(n)
t =

∞∑

k=1

(X
t
(n)
k ∧t

−X
t
(n)
k−1∧t

)2,

where t
(n)
k = k2−n.

(a) Assuming that X is a uniformly bounded martingale, show that there exists an adapted
process [X] such that

(i) E(supt>0 |[X]
(n)
t − [X]t|2)→ 0.

(ii) X2 − [X] is an L2 bounded martingale.

(iii) [X] is non-decreasing.

[You may use the following fact without proof:

Fact. For n > 1 and t > 0, let

M
(n)
t =

∞∑

k=1

X
t
(n)
k−1

(X
t
(n)
k ∧t

−X
t
(n)
k−1∧t

).

Then M (n) is a continuous martingale for each n and there exists a continuous martingale

M such that E(supt>0M
2
t ) <∞ and E(supt>0 |M (n)

t −Mt|2)→ 0 as n→∞.]

(b) Now assume that X is a local martingale. Show that there exists an adapted process
[X] such that

(i) sup06t6u |[X]
(n)
t − [X]t| → 0 in probability for all u > 0.

(ii) X2 − [X] is a local martingale.

(c) Show that the process [X] in part (b) has the property that supt>0 E([X]t) <∞ if and
only if E(supt>0X

2
t ) <∞.
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3 (a) Let M be a positive continuous martingale, such that logM is bounded. Show
that

E(M1 logM1) = E(M0 logM0) +
1

2
E
(∫ 1

0

d[M ]t
Mt

)

where [M ] is the quadratic variation of M .

For the rest of the problem, let B be a standard Brownian motion, let f be a
smooth function taking values in [a, b] where 0 < a < b < ∞, and assume the derivative
f ′ is bounded. For t ∈ [0, 1] and x ∈ R, let

U(t, x) = E{f(x + B1−t)2}.

(b) Let Mt = U(t,Wt) where W is a Brownian motion independent of B. By directly
computing conditional expectations and the definition of Brownian motion, show that M
is a martingale with respect to the filtration generated by W .

(c) Establish the identity

E{f(W1)
2 log

(
f(W1)

2
)
} = E{f(W1)

2} logE{f(W1)
2} +

1

2
E

{∫ 1

0

(
∂U
∂x (t,Wt)

)2

U(t,Wt)
dt

}
.

[Hint: f(W1)
2 = U(1,W1) and E{f(W1)

2} = U(0, 0). You may assume that U is smooth.]

(d) Prove that

E{f(W1)
2 log

(
f(W1)

2
)
} 6 E{f(W1)

2} logE{f(W1)
2} + 2E{f ′(W1)

2}.

[You may use the fact that ∂U
∂x (t, x) = 2 E{f(x+B1−t)f ′(x+B1−t)} without justification.]
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4 (a) Let X be a continuous, non-negative local martingale such that X0 = 1 and
Xt → 0 almost surely as t→∞. For each a > 1, let τa = inf{t > 0 : Xt > a}. Show that

P(τa <∞) = P(sup
t>0

Xt > a) = 1/a.

[Hint: compute the expected value of Xt∧τa = a1{τa6t} +Xt1{τa>t}. ]

Let M be a continuous local martingale with M0 = 0 and [M ]∞ =∞ almost surely.

(b) State the Dambis–Dubins–Schwarz theorem in terms of M . Give a proof of this
theorem under the additional assumption that the quadratic variation process [M ] is
strictly increasing almost surely.

(c) Show that Mt − 1
2 [M ]t → −∞ almost surely as t → ∞. [Hint: You may use without

proof the fact that Wt
t → 0 almost surely as t→∞, where W is a Brownian motion.]

(d) Show that
P(sup

t>0
{Mt − 1

2 [M ]t} > y) = e−y

for all y > 0. [Hint: Consider the local martingale X = eM−
1
2 [M ].]

5 Consider the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt (∗)

where W is a scalar Brownian motion and b, σ : R→ R are given functions.

(a) In the context of the stochastic differential equation (∗), define the following terms:

(i) weak solution;

(ii) strong solution;

(iii) uniqueness in law; and,

(iv) pathwise uniqueness.

For the rest of the question, specialise to the case where σ(x) = 1 for all x and b is
continuous and bounded.

(b) Let X be a solution of (∗). Show that there exists a strictly increasing function g such
that Y = g(X) is a local martingale.

(c) Verify that the function g found in part (b) is such that the function h = g′ ◦ g−1 is
Lipschitz. Hence, prove that equation (∗) has a pathwise unique strong solution. [You
may use any standard results on the existence and uniqueness of the solutions of stochastic
differential equations as long as they are carefully stated.]
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6 Suppose that a market has 1 + d assets with prices given by

dS
(0)
t = S

(0)
t rtdt

dS
(i)
t = S

(i)
t

(
µ
(i)
t dt+

d∑

k=1

σ
(i,k)
t dW

(k)
t

)

for 1 6 i 6 d where the adapted processes r, µ(i), σ(i,k) are bounded and continuous, and
where the W (k) are Brownian motions.

(a) Given an investor’s initial wealth x > 0, what is an x-admissible trading strategy?

(b) What is an arbitrage?

(c) Suppose that the matrix σt(ω) is invertible for all (t, ω) and that the process σ−1

is bounded. Show that the market has no arbitrage. Standard results from stochastic
calculus may be used without proof, but they must be stated clearly. If you use a
fundamental theorem of asset pricing, you must prove it.

(d) A market is said to satisfy the Law of One Price if it has the property that S
(i)
T = S

(j)
T

almost surely for some non-random T > 0 implies S
(i)
t = S

(j)
t almost surely for all

0 6 t 6 T . Give an example of a market model with no arbitrage which does not
obey the Law of One Price. [Hint: You may use the fact that any positive solution of the
stochastic differential equation dXt = X2

t dWt is a strictly local martingale.]

END OF PAPER
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