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1 In this question, all notions are to be understood with reference to a given
probability space (Ω,F ,P).

(a) What is meant by the conditional expectation E(X|G) of an integrable random
variable X given a sub-σ-algebra G?

(b) Show that the conditional expectation is unique, in a sense which you should make
precise.

(c) Show that, if H is another sub-σ-algebra, which is independent of G, then

E(X|G ∩ H) = E(X) almost surely.

(d) Let X1, X2 be independent N(0, 1) random variables and let G be the σ-algebra
generated by the random variable X1 +X2. Find E(X1|G).

(e) Let X be an integrable random variable and let G,H be sub-σ-algebras. Consider
the equation

E(E(X|G)|H) = E(X|G ∩ H) almost surely.

Show the validity of this equation in the following cases: (i) G ⊆ H, (ii) H ⊆ G, (iii)
G and H are independent.

(f) Is the equation in part (e) true in general? Justify your answer.

2 Let (Xn)n>0 be a non-negative supermartingale.

(a) Show that, for all a, b > 0 with a < b, the number of upcrossings U [a, b] of the
interval [a, b] by (Xn)n>0 satisfies

E(U [a, b]) 6 a/(b− a).

(b) Deduce that (Xn)n>0 converges almost surely as n→∞.

[You may assume the optional stopping theorem. If you use any other result of martingale
theory you should prove it.]
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3 Let (Sn)n>0 be a simple discrete-time random walk on the integers, starting from
0, with

P(S1 = 1) = p, P(S1 = −1) = 1− p, p ∈ (0, 1).

Write (St)t>0 for the continuous-time process obtained by linear interpolation of the
discrete-time walk between integer times. Thus Sn+t = (1 − t)Sn + tSn+1 for all non-
negative integers n and all t ∈ [0, 1].

(a) Show that (Sn−µn)n>0 is a discrete time martingale for some µ, to be determined.

(b) Compute the variance of Sn and hence show that the rescaled process S
(n)
t = n−1Snt

satisfies

E

(
sup
t∈[0,1]

∣∣∣S(n)
t − µt

∣∣∣
2
)

6 4

n
.

(c) Show that, for all θ ∈ R, for some ψ(θ) ∈ R to be determined, the following process
is a martingale

Zn = eθSn−ψ(θ)n.

(d) Fix ε > 0 and n and consider the event

A = {Sk − µk > εn for some k 6 n}.

For θ > 0, by considering the value of ZT on A for a suitable stopping time T , show
that

P(A) 6 e−(θ(µ+ε)−ψ(θ))n

and deduce that

P

(
sup
t∈[0,1]

|S(n)
t − µt| > ε

)
6 e−nψ

∗(µ+ε) + e−nψ
∗(µ−ε)

where ψ∗ is the Legendre transform of ψ.
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(a) What does it mean to say that a random process (Xt)t>0 is a Brownian motion in
Rd?

(b) Show that, if (Xt)t>0 is a Brownian motion in Rd and if U is an orthogonal d × d
matrix, then the process (UXt)t>0 is also a Brownian motion in Rd.

Fix a > 0 and let (A−
t )t>0, (A+

t )t>0 and (Bt)t>0 be independent one-dimensional Brownian
motions, starting from −a, a and 0 respectively. Set

T = inf{t > 0 : A−
t = A+

t }

and define on the event {T 6 t}

Zt = A+
T + (Bt −BT ).

(c) By considering an orthogonal transformation of (A−
t , A

+
t )t>0, or otherwise, show

that T <∞ almost surely and find a density function for T .

(d) For s, t > 0 with s 6 t, show that

P(T 6 s and Zt 6 z) =

∫ s

0
Φ

(
z√

t− u/2

)
a√
πu3

e−a
2/udu

where Φ denotes the standard normal distribution function.
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(a) State and prove the Skorokhod embedding theorem for random walks with steps of
mean 0 and variance σ2 <∞.

(b) Deduce the central limit theorem. [You may use any form of the law of large
numbers, without proof. If you use Donsker’s invariance principle, you should prove
it.]
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6 In all parts of this question, it is to be assumed that we consider the case of a
real-valued random process.

(a) What does it mean to say that (Xt)t>0 is a Lévy process?

(b) State the Lévy–Khinchin theorem.

(c) State how a Lévy process with Lévy triple (a, b,K) can be constructed from a
Brownian motion and a suitable Poisson random measure.

(d) In each of the following cases, find necessary and sufficient conditions on the Lévy
triple (a, b,K) such that the associated Lévy process (Xt)t>0 has the given property:

(i) (Xt(ω))t>0 is differentiable for almost all ω ∈ Ω,

(ii) (Xt(ω))t>0 is continuous for almost all ω ∈ Ω,

(iii) (Xt)t>0 is an integrable process,

(iv) (X2
t )t>0 is an integrable process.

[Justify your answers. You may use without proof any property of Brownian motion
or Poisson random measures, provided that you state it clearly.]

END OF PAPER
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