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1 (i) Let G be a graph with n vertices and m edges, with m > 6n. Prove that if G
is drawn in the plane, then there must be at least cm3/n2 crossings, where c > 0 is an
absolute constant. [You may assume Euler’s formula.]

(ii) Let P1, . . . , Pm be distinct real polynomials in one variable of degree d, let
x1, . . . , xn be distinct real numbers, and let y1, . . . , yn be real numbers. By modifying
the proof of the Szemerédi-Trotter theorem appropriately, prove that the number of pairs
(i, j) such that Pi(xj) = yj is at most C(m + n + d1/3m2/3n2/3), where C is an absolute
constant.

2 (i) Let X and Y be random variables that each take finitely many possible values.
Prove that H(X,Y ) 6 H(X) + H(Y ). Deduce that if X1, . . . , Xn are such random
variables, then H(X1, . . . , Xn) 6 H(X1) + · · ·+ H(Xn). [You may use either the formula
or the abstract approach.]

(ii) State and prove Shearer’s lemma.

(iii) Let A and F be two collections of subsets of [n]. Suppose that for every i ∈ [n]
there are at least t sets F ∈ F such that i ∈ F . For each F ∈ F , define the trace TF (A)
to be {A ∩ F : A ∈ A}. Deduce from Shearer’s lemma that

|A| 6
(∏

F∈F
|TF (A)|

)1/t
.

[Hint: Let A be an element of A chosen uniformly at random and let Xi = 1 if i ∈ A and
0 otherwise.]

3 (i) State and prove Alon’s combinatorial Nullstellensatz.

(ii) Let A be an n × n matrix over a field F. Suppose that the permanent of A is
non-zero. Let b ∈ Fn and let S1, . . . , Sn be subsets of F of size 2. Prove that there exists
x ∈ S1 × · · · × Sn such that the vectors Ax and b differ in all n coordinates.

[Recall that the permanent is defined using the formula for the determinant but without
the signs.]
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4 (i) Let p be a prime, let A be a collection of subsets of [n], and let E ⊂ Fp of size
m. Suppose that |A| /∈ E for every A ∈ A and that |A ∩B| ∈ E for every pair of distinct
elements A,B of A. Show that

|A| 6
(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

m

)
.

(ii) Let p be a prime, let n = p3, and define a graph whose vertices are the subsets
of [n] of size p2, with A joined to B if and only if |A ∩ B| is a multiple of p. Using the
result in (i), prove that the largest independent set in the graph has size at most

(
n

0

)
+

(
n

1

)
+ · · ·+

(
n

p− 1

)
.

Show that this is at most p3p.

(iii) Let q be a prime between p2 and 2p2. Using the result in (i) again (but with p
replaced by q) prove that the largest clique in the graph also has size at most p3p.

(iv) Deduce that if k = p3p, then the Ramsey number R(k, k) is at least
(p3
p2

)
. Show

that this is larger than any polynomial function of k.
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