MATHEMATICAL TRIPOS Part III

Thursday, 24 June, 2021 $\,$ 12:00 pm to 3:00 pm

PAPER 160

REPRESENTATION THEORY OF SYMMETRIC GROUPS

Before you begin please read these instructions carefully.

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight. All representations on this exam are assumed to be finite-dimensional.

Unless otherwise stated, they are over the field \mathbb{C} .

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF

2

1 In this question, let \mathbb{F} be an arbitrary field.

For a partition μ , the μ -Young permutation module over \mathbb{F} is denoted by M^{μ} , and the μ -Specht module over \mathbb{F} by \mathcal{S}^{μ} . Let n be a natural number and λ be a partition of n.

- (a) Let v and w be λ -tableaux such that $\mathfrak{b}_v \cdot \{w\} \neq 0$. Show that there exists $h \in C(v)$ such that $h \cdot \{v\} = \{w\}$.
- (b) State and prove James's submodule theorem.
- (c) Fix a λ -tableau t and consider the λ' -tableau t', the transpose of t, obtained from t by interchanging the rows and columns. Fix a (1^n) -tableau u.
 - (i) Show that

$$\theta : M^{\lambda'} \longrightarrow \mathcal{S}^{\lambda} \otimes \mathcal{S}^{(1^n)} \{g \cdot t'\} \longmapsto g \cdot (e(t) \otimes e(u))$$

for all $g \in S_n$, extended \mathbb{F} -linearly, is a well-defined and surjective $\mathbb{F}S_n$ -homomorphism.

- (ii) Writing $\theta(e(t')) = m \otimes e(u)$ for some $m \in \mathcal{S}^{\lambda}$, show that $\langle m, \{t\} \rangle = |R(t)|$.
- (iii) Now suppose char(\mathbb{F}) = 0. Show that ker(θ) = ($\mathcal{S}^{\lambda'}$)^{\perp}.

Hence write down an $\mathbb{F}S_n$ -isomorphism from $\mathcal{S}^{\lambda} \otimes \mathcal{S}^{(1^n)}$ to $(\mathcal{S}^{\lambda'})^*$: you should give the image of $e(w) \otimes e(u)$ for every λ -tableau w.

[As usual, V^* denotes the dual of V. If V is an $\mathbb{F}S_n$ -module then the S_n -action on $V^* = \operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F})$ is given by $(g \cdot \phi)(v) := \phi(g^{-1} \cdot v)$ for $g \in S_n$, $\phi \in V^*$ and $v \in V$.]

UNIVERSITY OF CAMBRIDGE

2 For a partition μ , the μ -Specht module over \mathbb{C} is denoted by S^{μ} and its character by χ^{μ} . In the usual notation from lectures, $\psi^{\lambda} = \sum_{\pi \in S_{\mathbb{N}}} \operatorname{sgn}(\pi) \cdot \xi^{\lambda - \operatorname{id} + \pi}$ for integer compositions λ .

(a) (i) Let λ be an integer composition and *i* be a natural number. Show that $\psi^{\mu} = -\psi^{\lambda}$, where

$$\mu = (\lambda_1, \ldots, \lambda_{i-1}, \lambda_{i+1} - 1, \lambda_i + 1, \lambda_{i+2}, \ldots).$$

(ii) State and prove the restriction version of the Branching Rule. [You may assume that $\psi^{\lambda} = \chi^{\lambda}$ whenever λ is a partition. You may also use the following result without proof: if λ is an integer composition of n = m + k, then $\xi^{\lambda} \downarrow_{S_m \times S_k} = \sum_{\mu \models k} \xi^{\lambda - \mu} \# \xi^{\mu}$.]

In parts (b)-(d) below, you may use general results from the course without proof, provided they are stated clearly.

(b) Decompose the following $\mathbb{C}S_4$ -module V into a direct sum of irreducible modules:

$$V = \left(\mathcal{S}^{(2)} \uparrow_{S_2}^{S_4} \right) \otimes \left(\mathcal{S}^{(1^3)} \uparrow_{S_3}^{S_4} \right).$$

Give your answer in the form $V \cong \bigoplus_{\lambda \vdash 4} (S^{\lambda})^{\oplus m_{\lambda}}$, for certain non-negative multiplicities m_{λ} to be determined.

(c) Let $H \leq G$ be finite groups. Let χ be a character of G and ϕ a character of H. Show that

$$\chi \cdot (\phi \uparrow^G) = (\chi \downarrow_H \cdot \phi) \uparrow^G.$$

- (d) Let $n \in \mathbb{N}$ with $n \ge 2$. You may assume that $\xi^{(n-1,1)} = \chi^{(n)} + \chi^{(n-1,1)}$.
 - (i) Let $\lambda \vdash n$. Using (c) or otherwise, show that

$$\langle \chi^{\lambda} \cdot \chi^{\lambda}, \chi^{(n-1,1)} \rangle = |\lambda^{-}| - 1.$$

[Hint: recall that $\xi^{\lambda} = \mathbb{1} \uparrow_{S_{\lambda}}^{S_n}$, where S_{λ} is a Young subgroup of type λ .]

(ii) Now suppose that n is prime and let $\alpha, \beta \vdash n$. Show that if $\chi^{\alpha} \cdot \chi^{\beta}$ is irreducible, then either α or β belongs to $\{(n), (1^n)\}$.

3

- (a) Let $\lambda = (\lambda_1, \ldots, \lambda_{l(\lambda)})$ be a partition.
 - (i) Suppose $(i, j) \in \mathcal{Y}(\lambda)$. Show that

$$\{1, 2, \dots, h_{i,j}(\lambda)\} = \{h_{i,y}(\lambda) \mid j \leqslant y \leqslant \lambda_i\} \sqcup \{h_{i,j}(\lambda) - h_{x,j}(\lambda) \mid i < x \leqslant \lambda'_j\}.$$

(ii) Let $\mathbf{X} = \{h_1, \dots, h_m\}$ be a β -set for λ . For $i \in \{1, 2, \dots, l(\lambda)\}$ and $h \in \mathbb{N}$, show that

$$h \in \mathcal{H}_i(\lambda) \iff h_i - h \ge 0 \text{ and } h_i - h \notin \mathbf{X},$$

where $\mathcal{H}_i(\lambda) = \{h_{i,j}(\lambda) \mid 1 \leq j \leq \lambda_i\}.$

[You may use without proof that $\mathcal{H}_i(\lambda) = \{1, 2, \dots, h_i\} \setminus \{h_i - h_j \mid i < j \leq m\}$.] Deduce that if λ has a hook of length ef for some natural numbers e and f, then λ has a hook of length e.

(b) Let λ be any partition. Show that the number of odd hook lengths of λ minus the number of even hook lengths of λ is a triangular number, i.e. equal to $\binom{m}{2}$ for some $m \in \mathbb{N}$. What is m in terms of λ ?

[Hint: first consider when λ is a 2-core partition.]

- (c) (i) Compute the 4-quotient $Q_4(\lambda)$ of $\lambda = (3, 1)$.
 - (ii) Calculate the 2-quotient tower $T^Q(\lambda)$ of $\lambda = (3, 1)$.
 - (iii) Let e, k and n be natural numbers. Let $\lambda \vdash n$. Show that the sequence $Q_{e^k}(\lambda)$ is a permutation of $T^Q(\lambda)_k$, where $T^Q(\lambda)$ is the *e*-quotient tower of λ . *[Hint: induct on k.]*

- 4 Fix a prime number *p*.
 - (a) Let *n* be a non-negative integer. Suppose the *p*-adic expansion of *n* is $n = \sum_{r=0}^{\infty} \alpha_r p^r$. That is, the digits α_r belong to $\{0, 1, \ldots, p-1\}$ for all $r \in \mathbb{N}_0$. Let $\lambda \vdash n$. Prove that

$$\mathbf{v}_p(\chi^{\lambda}(1)) = \frac{\sum_{r=0}^{\infty} |T^C(\lambda)_r| - \sum_{r=0}^{\infty} \alpha_r}{p-1},$$

where $T^{C}(\lambda)$ denotes the *p*-core tower of λ .

[You may use earlier results from the course without proof, provided they are stated clearly.]

- (b) Define the function $d : \mathbb{N}_0 \to \mathbb{N}_0$ by setting d(n) to be the sum of the digits in the *p*-adic expansion of *n*. In particular, for *n* as in part (a), this means $d(n) = \sum_{r=0}^{\infty} \alpha_r$. Show that $d(x+y) \leq d(x) + d(y)$ for all non-negative integers *x* and *y*.
- (c) Let λ be any partition. Prove that

$$\mathbf{v}_p(\chi^{\lambda}(1)) \ge \mathbf{v}_p(\chi^{C_p(\lambda)}(1)).$$

[Hint: recall that $T^{C}(\lambda)_{r}$ is the concatenation of $T^{C}(\lambda^{(j)})_{r-1}$ over $j \in \{0, 1, \ldots, p-1\}$, for each $r \ge 1$.]

END OF PAPER