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1 In this question, let F be an arbitrary field.

For a partition µ, the µ-Young permutation module over F is denoted by Mµ, and
the µ-Specht module over F by Sµ. Let n be a natural number and λ be a partition of n.

(a) Let v and w be λ-tableaux such that bv · {w} 6= 0. Show that there exists h ∈ C(v)
such that h · {v} = {w}.

(b) State and prove James’s submodule theorem.

(c) Fix a λ-tableau t and consider the λ′-tableau t′, the transpose of t, obtained from t
by interchanging the rows and columns. Fix a (1n)-tableau u.

(i) Show that

θ : Mλ′ −→ Sλ ⊗ S(1n)
{g · t′} 7−→ g ·

(
e(t)⊗ e(u)

)

for all g ∈ Sn, extended F–linearly, is a well-defined and surjective FSn–
homomorphism.

(ii) Writing θ
(
e(t′)

)
= m⊗ e(u) for some m ∈ Sλ, show that 〈m, {t}〉 = |R(t)|.

(iii) Now suppose char(F) = 0. Show that ker(θ) = (Sλ′)⊥.

Hence write down an FSn–isomorphism from Sλ⊗S(1n) to (Sλ′)∗: you should
give the image of e(w)⊗ e(u) for every λ-tableau w.

[As usual, V ∗ denotes the dual of V . If V is an FSn–module then the Sn–
action on V ∗ = HomF(V,F) is given by (g · φ)(v) := φ(g−1 · v) for g ∈ Sn,
φ ∈ V ∗ and v ∈ V .]
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2 For a partition µ, the µ-Specht module over C is denoted by Sµ and its character
by χµ. In the usual notation from lectures, ψλ =

∑
π∈SN

sgn(π) · ξλ−id+π for integer
compositions λ.

(a) (i) Let λ be an integer composition and i be a natural number. Show that
ψµ = −ψλ, where

µ = (λ1, . . . , λi−1, λi+1 − 1, λi + 1, λi+2, . . . ).

(ii) State and prove the restriction version of the Branching Rule.

[You may assume that ψλ = χλ whenever λ is a partition. You may also use
the following result without proof: if λ is an integer composition of n = m+k,
then ξλ

y
Sm×Sk =

∑
µ�k ξ

λ−µ#ξµ.]

In parts (b)–(d) below, you may use general results from the course without proof, provided
they are stated clearly.

(b) Decompose the following CS4–module V into a direct sum of irreducible modules:

V =
(
S(2)

xS4

S2

)
⊗
(
S(13)

xS4

S3

)
.

Give your answer in the form V ∼=
⊕

λ`4(Sλ)⊕mλ , for certain non-negative multi-
plicities mλ to be determined.

(c) Let H 6 G be finite groups. Let χ be a character of G and φ a character of H.
Show that

χ · (φ
xG) = (χ

y
H
· φ)
xG.

(d) Let n ∈ N with n > 2. You may assume that ξ(n−1,1) = χ(n) + χ(n−1,1).

(i) Let λ ` n. Using (c) or otherwise, show that

〈χλ · χλ, χ(n−1,1)〉 = |λ−| − 1.

[Hint: recall that ξλ = 1

xSn
Sλ
, where Sλ is a Young subgroup of type λ.]

(ii) Now suppose that n is prime and let α, β ` n. Show that if χα · χβ is
irreducible, then either α or β belongs to {(n), (1n)}.
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(a) Let λ = (λ1, . . . , λl(λ)) be a partition.

(i) Suppose (i, j) ∈ Y(λ). Show that

{1, 2, . . . , hi,j(λ)} = {hi,y(λ) | j 6 y 6 λi} t {hi,j(λ)− hx,j(λ) | i < x 6 λ′j}.

(ii) Let X = {h1, . . . , hm} be a β-set for λ. For i ∈ {1, 2, . . . , l(λ)} and h ∈ N,
show that

h ∈ Hi(λ)⇐⇒ hi − h > 0 and hi − h /∈ X,

where Hi(λ) = {hi,j(λ) | 1 6 j 6 λi}.
[You may use without proof thatHi(λ) = {1, 2, . . . , hi}\{hi−hj | i < j 6 m}.]
Deduce that if λ has a hook of length ef for some natural numbers e and f ,
then λ has a hook of length e.

(b) Let λ be any partition. Show that the number of odd hook lengths of λ minus the
number of even hook lengths of λ is a triangular number, i.e. equal to

(
m
2

)
for some

m ∈ N. What is m in terms of λ?

[Hint: first consider when λ is a 2-core partition.]

(c) (i) Compute the 4-quotient Q4(λ) of λ = (3, 1).

(ii) Calculate the 2-quotient tower TQ(λ) of λ = (3, 1).

(iii) Let e, k and n be natural numbers. Let λ ` n. Show that the sequence Qek(λ)
is a permutation of TQ(λ)k, where T

Q(λ) is the e-quotient tower of λ.

[Hint: induct on k.]

Part III, Paper 160



5

4 Fix a prime number p.

(a) Let n be a non-negative integer. Suppose the p-adic expansion of n is n =∑∞
r=0 αrp

r. That is, the digits αr belong to {0, 1, . . . , p − 1} for all r ∈ N0. Let
λ ` n. Prove that

vp
(
χλ(1)

)
=

∑∞
r=0 |TC(λ)r| −

∑∞
r=0 αr

p− 1
,

where TC(λ) denotes the p-core tower of λ.

[You may use earlier results from the course without proof, provided they are stated
clearly.]

(b) Define the function d : N0 → N0 by setting d(n) to be the sum of the digits in the
p-adic expansion of n. In particular, for n as in part (a), this means d(n) =

∑∞
r=0 αr.

Show that d(x+ y) 6 d(x) + d(y) for all non-negative integers x and y.

(c) Let λ be any partition. Prove that

vp
(
χλ(1)

)
> vp

(
χCp(λ)(1)

)
.

[Hint: recall that TC(λ)r is the concatenation of TC(λ(j))r−1 over j ∈ {0, 1, . . . , p−
1}, for each r > 1.]

END OF PAPER
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