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1 All surfaces appearing in this question will be smooth and projective.

What is the Picard group of a surface and what is its group operation? Define the
intersection pairing between elements of the Picard group. Describe the Picard group
and its intersection pairing on the surface P(OP1 ⊕OP1(1)).

Let π : X → P2 be a birational morphism and assume π−1 is not defined every-
where. Prove that the Picard group of X contains an element whose self-intersection is
zero.

Let ϕ : P2 → Pn be a morphism with the property that there exists a line ` ⊂ P2

such that ϕ(`) is a point. Prove that ϕ is constant.

Let X be a surface and C ⊂ X be a smooth curve with positive self-intersection.
Construct a new surface X ′ and a morphism π : X ′ → X such that X ′ contains a curve
C ′ with negative self-intersection, and π restricts to an isomorphism from C ′ to C.

2 All surfaces appearing in this question will be smooth, connected, and projective.

What is a minimal surface? Prove that an abelian surface is minimal. Prove that
there exist infinitely many non-isomorphic minimal rational surfaces.

What is a K3 surface? Let C be a smooth curve of genus g on a K3 surface X.
Calculate the self-intersection of C.

What is an elliptically fibered surface? Show that an elliptically fibered surface can
have Kodaira dimension equal to −∞. Construct an elliptically fibered K3 surface.

What is a surface of general type? Construct a general type surface that admits a
finite degree 2 morphism to P2.
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3 All surfaces appearing in this question will be smooth and projective.

What is the irregularity of a surface? What is the geometric genus of a surface?

Let X ′ → X be a blowup of a surface at a point. Prove that the geometric genus
of X ′ coincides with that of X.

Let X be a product of two curves of positive genus. Prove that X is not isomorphic
to a hypersurface in projective space.

What is the Albanese variety? Let X be a surface and let X → Alb(X) be the
morphism to its Albanese variety. Assume that the image of X is a smooth curve of genus
g. Calculate the irregularity of X.
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