MATHEMATICAL TRIPOS Part III

Monday, 21 June, 2021 $\,$ 12:00 pm to 3:00 pm

PAPER 159

ALGEBRAIC SURFACES

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt **ALL** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

2

1 All surfaces appearing in this question will be smooth and projective.

What is the *Picard group* of a surface and what is its group operation? Define the intersection pairing between elements of the Picard group. Describe the Picard group and its intersection pairing on the surface $\mathbb{P}(\mathcal{O}_{\mathbb{P}^1} \oplus \mathcal{O}_{\mathbb{P}^1}(1))$.

Let $\pi : X \to \mathbb{P}^2$ be a birational morphism and assume π^{-1} is not defined everywhere. Prove that the Picard group of X contains an element whose self-intersection is zero.

Let $\varphi : \mathbb{P}^2 \to \mathbb{P}^n$ be a morphism with the property that there exists a line $\ell \subset \mathbb{P}^2$ such that $\varphi(\ell)$ is a point. Prove that φ is constant.

Let X be a surface and $C \subset X$ be a smooth curve with positive self-intersection. Construct a new surface X' and a morphism $\pi : X' \to X$ such that X' contains a curve C' with negative self-intersection, and π restricts to an isomorphism from C' to C.

2 All surfaces appearing in this question will be smooth, connected, and projective.

What is a *minimal surface*? Prove that an abelian surface is minimal. Prove that there exist infinitely many non-isomorphic minimal rational surfaces.

What is a K3 surface? Let C be a smooth curve of genus g on a K3 surface X. Calculate the self-intersection of C.

What is an *elliptically fibered surface*? Show that an elliptically fibered surface can have Kodaira dimension equal to $-\infty$. Construct an elliptically fibered K3 surface.

What is a *surface of general type*? Construct a general type surface that admits a finite degree 2 morphism to \mathbb{P}^2 .

3 All surfaces appearing in this question will be smooth and projective.

What is the *irregularity* of a surface? What is the *geometric genus* of a surface?

Let $X' \to X$ be a blowup of a surface at a point. Prove that the geometric genus of X' coincides with that of X.

Let X be a product of two curves of positive genus. Prove that X is not isomorphic to a hypersurface in projective space.

What is the Albanese variety? Let X be a surface and let $X \to Alb(X)$ be the morphism to its Albanese variety. Assume that the image of X is a smooth curve of genus g. Calculate the irregularity of X.

END OF PAPER