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1 Infinite Games
In this question, work in ZF without the Axiom of Choice. Let M , X, and Y be arbitrary
sets.

(i) Let A ⊆Mω. Define what it means that A is quasidetermined.

(ii) Define the axiom ACX(Y ).

(iii) Write ΦM for the statement “every quasidetermined set A ⊆ Mω is determined”.
Specify sets X and Y such that ACX(Y ) is equivalent to ΦM .

[You do not need to prove your claim.]

(iv) Let A ⊆ R × R and pA := {y ∈ R ; ∃x ∈ R((x, y) ∈ A)} be its projection. A
function f : pA→ R is called a uniformisation of A if for all x ∈ pA, we have that
(f(x), x) ∈ A. Show that ADR implies that every set A ⊆ R×R has a uniformisation.

2 Infinite Games
In this question, work in ZFC with the Axiom of Choice. Let A ⊆ ωω and let X and Y be
arbitrary sets. Let κ be any infinite cardinal and κ+ be its cardinal successor.

Recall that a set A ⊆ ωω is called X-Suslin if there is a tree T ⊆ (X ×ω)<ω such that for
all x ∈ ωω, we have that x ∈ A if and only if there is a y ∈ Xω such that (y, x) ∈ [T ].

(i) Suppose that there is an injection f : X → Y . Show that A is X-Suslin, then A is
Y -Suslin.

(ii) Prove that every set A ⊆ ωω is 2ℵ0-Suslin.

(iii) Show that every κ+-Suslin set is a union of κ+ many κ-Suslin sets.

(iv) We write Ψκ for the statement “there is a set that is not κ-Suslin”. Prove both of
the following implications:

Ψℵ2 =⇒ 2ℵ0 > ℵ2 =⇒ Ψℵ1 .

[You may use the fact that all analytic sets have the perfect set property.]
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3 Infinite Games
In this question, work under the assumption that ZFC is consistent. You may use the fact
that under this assumption, the theory ZFC + CH is also consistent. In this question, an
explanation of a statement consists of a list of results stated in the lectures, stated clearly
and correctly, and a brief argument that these results imply the statement. You do not
need to give a proof of any of the results in your list.

(i) Explain the following statement:

If M is a projectively well-ordered inner model and all projective sets
are determined, then ℵM

1 is a countable ordinal.

Give precise definitions of the concepts “projectively well-ordered” and “ℵM
1 ”

occurring in the statement.

(ii) Explain why it is not possible that ZFC proves the statement “All ℵ1-Suslin sets are
determined.”

4 Infinite Games
In this question, work in ZF+ AD without the Axiom of Choice.

(i) Consider the following three games played as follows

Player I x0 x1 x2 x3 · · ·  x ∈ ωω
Player II y0 y1 y2 y3 · · ·  y ∈ ωω

and determine which of the two players has a winning strategy. Justify your claim.

[You may use theorems proved in the lectures without proof, provided that you state
them clearly and correctly.]

(a) If y /∈WF, player I wins; if y ∈WF, but x /∈WF, player II wins; if x, y ∈WF,
then player II wins if ‖x‖ < ‖y‖.

(b) If we have yn 6 xn for all n, then player I wins; otherwise, player II wins if
y /∈WF.

(c) If x /∈WF, then player I wins if and only if x = y; if x ∈WF, then player II
wins if and only if y ∈WF and ‖x‖ < ‖y‖.

(ii) Assume that there is a surjection π : ωω → ℵ2 and a sequence {gξ ; ξ < ω2} such
that each gξ is a surjection from ωω onto ℘(ξ). Show that there is a surjection from
ωω → ℘(ℵ2).
[Hint. Use Friedman-Moschovakis games.]
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