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1 Let S be a closed, orientable surface.

(a) State without proof a condition on collections of simple closed curves

{α1, . . . , αn}, {β1, . . . , βn}

that guarantees that, if αi is homotopic to βi for each i, then there is an ambient isotopy
of S taking αi to βi for all i.

(b) Define the structure graph of a collection of simple closed curves {αi} on S.
State and prove the Alexander method, using your condition from part (a).

(c) Let T 2 be the torus. By considering a pair of essential simple closed curves
on T 2, and using the Alexander method, show that the centre of Mod(T ) has order two.
[State carefully any results about Dehn twists that you use.]

2 Let S be a connected, orientable surface of finite type and let G be its fundamental
group.

(a) Explain briefly why there is a natural homomorphism

p : Mod(S)→ Out(G) ,

where Out(G) denotes the outer automorphism group of G.

(b) The commutator subgroup [G,G] of a group G is defined to be the intersection
of the kernels of the set of homomorphisms from G to abelian groups. The abelianisation
of G is the abelian group

Gab := G/[G,G] .

Prove that the map q : Out(G)→ Aut(Gab) defined by

q([A])(g[G,G]) = A(g)[G,G]

is a well-defined group homomorphism.

(c) When S is the punctured torus T 2
∗ , recall that the fundamental groupG = π1(T

2
∗ )

is the free group on two generators 〈α, β〉, and its abelianisation Gab is isomorphic to Z2.
By considering the maps p and q, show that Out(G) is infinite.

[You may use without proof that the matrices

(
1 0
1 1

)
and

(
1 −1
0 1

)

generate SL2(Z).]

(d) Give an example where the image p(Mod(S)) is a subgroup of infinite index in
Out(π1(S)).
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3 (a) Let S be a connected, oriented, hyperbolic surface of finite type. Define the
pure mapping class group of S. Let S∗ denote S with an additional puncture. Describe the
point pushing map in terms of Dehn twists and state the Birman exact sequence carefully.

(b) For S = S0,3,0, the 3-punctured sphere, prove that PMod(S) is trivial. [If you
use a result classifying simple proper arcs, you should prove it.]

(c) Let Σ = S0,5,0, the 5-punctured sphere. Prove that PMod(Σ) has a free
normal subgroup K and a free subgroup F such that F ∩K is trivial and, furthermore,
PMod(Σ) = FK. (That is, every element of PMod(Σ) is of the form fk for f ∈ F and
k ∈ K.) What is the minimal size of a generating set for F? What about K?

[Hint: You may use the following fact without proof. If F is a free group with
minimal generating set of cardinality r < ∞, and G is any group with a generating set of
cardinality r, then any surjective homomorphism G → F is an isomorphism.]

4 Let S be the closed, orientable surface of genus 2.

(a) Define the complex of curves C(S), and prove that it is connected.

(b) Consider a set of essential simple closed curves α1, . . . , αn in minimal position.
What does it mean for the set α1, . . . , αn to fill S?

(c) The distance between two vertices in C(S) is the smallest number of edges in a
path in the 1-skeleton between them. Exhibit a pair of vertices of C(S) at distance strictly
greater than 2. [Any explicit curves that you use should be specified carefully.]
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