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Define the notions of coarse embedding and uniform coarse embedding.

Let Hn denote the Hamming cube of dimension n. Show that {Hn : n ∈ N}
uniformly coarsely embeds into L1. Does {Hn : n ∈ N} uniformly coarsely embed into L2?
Justify your answer.

Define the expanding constant of a (finite) graph. What is a family of expanders?

Let G = (V,E) be a graph on n vertices with expanding constant h = h(G) > 0.
Show that for a function f : V → R with median M , the following inequality holds:

∑

x,y∈V
ax,y|f(x)− f(y)| > 2h

∑

x∈V
|f(x)−M |

where A = (ax,y)x,y∈V is the adjacency matrix of G. Deduce that

∑

x,y∈V
ax,y|f(x)− f(y)| > h

n

∑

x,y∈V
|f(x)− f(y)|

and hence obtain a Poincaré inequality for L1-valued functions on V . Deduce the following
lower bound of the L1-distortion of G if G is d-regular for some d > 3:

c1(G) > h

2d log d
log
(n

2
− 1
)

Prove that a family of expanders does not uniformly coarsely embed into L1. Does
the same hold if we replace L1 with L2? Justify your answer.

[
Throughout this question you may use lower bounds on distortion in terms of

Poincaré ratios.
]
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Let X and Y be Banach spaces. What does it mean to say that X is finitely
representable in Y ? What does it mean to say that X is superreflexive?

Prove that a Banach space X is reflexive if and only if for all θ > 0, for all sequences
(xi) in the closed unit ball BX , there exist n ∈ N, y ∈ conv{xi : 1 6 i 6 n} and
z ∈ conv{xi : i > n} such that ‖y − z‖ < θ. [You may use the Principle of Local
Reflexivity without proof.]

Prove that a Banach space X is superreflexive if and only if for all θ > 0, there
exists N ∈ N such that every sequence (xi)

N
i=1 in BX has the following property: there

exist n ∈ N with 1 6 n < N , y ∈ conv{xi : 1 6 i 6 n} and z ∈ conv{xi : n+ 1 6 i 6 N}
such that ‖y − z‖ < θ. [You may assume without proof that any ultrapower of a Banach
space Z is finitely representable in Z.]

State a purely metric condition on a Banach space that is equivalent to superreflex-
ivity. Show that the condition is sufficient. [You may assume any other characterization
of superreflexivity from the course as well as results about embeddings of diamond graphs
into Rn with standard norms.]

3

State Bourgain’s Embedding Theorem.

Prove that there is a constant C > 0 such that for all q, n ∈ N, q > 2, every n-point
metric space embeds into `k∞ with distortion at most α = 2q−1 for some k 6 Cqn1/q log n.
Deduce that c2(n) = O(log2 n).

Show that there is a constant c > 0 such that if G is a d-regular graph on n vertices
with expanding constant h that embeds into `k∞ with distortion at most α, then k > nc/α,
where d > 3 and c depends only on d and h. [You may assume that for such a graph G,
the Lp-distortion cp(G) > C 1

p log n for all 1 < p < ∞, where C is a constant depending
only on d and h.]
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State the Johnson–Lindenstrauss lemma.

Let E,X be normed spaces with n = dimE < ∞ and let δ ∈ (0, 1/3). Show that
the unit sphere SE of E has a δ-net S ⊂ SE of size |S| 6

(
3
δ

)n
. Show that if T : E → X

is a linear map such that 1 − δ 6 ‖Tx‖ 6 1 + δ for all x ∈ S, then T is injective with
‖T‖‖T−1‖ 6 1+δ

1−3δ .

Let Y be a random variable with the standard normal distribution. (Thus,
Y ∼ N(0, 1) has pdf 1√

2π
e−y

2/2.) It is known that for some constant C > 0 the following

inequalities hold:

Eeu(|Y |−β) 6 eCu
2

and Ee−u(|Y |−β) 6 eCu
2

for all u > 0 where β =
√

2
π . Prove the first of these inequalities. [Hint: Note that

1√
2π

∫∞
0 e−y

2/2 dy = 1
2 and 1 + x 6 ex for all x ∈ R.]

Let n, k ∈ N and δ ∈ (0, 1). Let T : `n2 → `k1 be the random linear map given by

(
Tx
)
i

=
1

βk

n∑

j=1

Zi,jxj for x = (xj)
n
j=1 ∈ `n2 and 1 6 i 6 k

where the Zi,j , 1 6 i 6 k and 1 6 j 6 n, are independent standard normal distributions.
Show that for every x ∈ Rn and δ ∈ (0, 1) we have

P
[
(1− δ)‖x‖2 6 ‖Tx‖1 6 (1 + δ)‖x‖2

]
> 1− 2e−cδ

2k

where c > 0 is an absolute constant independent of k, n, δ.

Show that for every ε > 0 there is a constant Cε > 0 such that whenever k > Cεn,
there is a linear embedding T : `n2 → `k1 of distortion ‖T‖‖T−1‖ < 1 + ε.

Show that there is a constant C > 0 such that every n-point metric space embeds
into `k1 with distortion at most C log n, where k 6 C log n.

END OF PAPER
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