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1 (a) (i) State an explicit description of the inverse limit of an inverse system of
sets.

(ii) Show that an inverse limit of an inverse system of non-empty finite sets is
non-empty.

(b) Let {Gj}j∈J be an inverse system of finite groups indexed over an inverse system J .
Let G = lim←−Gj and let pj : G→ Gj be the projection map for j ∈ J .

(i) Show that G, with its standard topology, is a topological group.

(ii) Deduce that, for a fixed element h ∈ G, the function

ch : G→ G, g 7→ ghg−1

is continuous.

(iii) Show that the conjugacy class

CCl(h,G) = {ghg−1 | g ∈ G}

of an element h ∈ G is a closed set.

(iv) Let g, h ∈ G. Show that g and h are conjugate in G if and only if pj(g)
and pj(h) are conjugate in Gj for all j ∈ J .

(c) Let Γ be an abstract group. We say that Γ is conjugacy separable if for every g, h ∈ Γ
such that g is not conjugate to h in Γ there exists a homomorphism f : Γ→ Q from Γ to
a finite group Q such that f(g) is not conjugate to f(h) in Q.

Assume that Γ is residually finite, and identify Γ with its image under the canonical
inclusion Γ ↪→ Γ̂.

(i) Let γ ∈ Γ. Show that CCl(γ, Γ̂) is the closure of CCl(γ,Γ) in Γ̂.

(ii) Show that Γ is conjugacy separable if and only if

CCl(γ, Γ̂) ∩ Γ = CCl(γ,Γ)

for every γ ∈ Γ.
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2 (a) Let {Gj}j∈J be an inverse system of finite groups. Let G = lim←−Gj and let
pj : G→ Gj be the projection maps. We say that S ⊆ G is a topological generating set for
G if the subgroup of G generated by S is dense in G.

(i) State a criterion for S to be a topological generating set of G, in terms of
the inverse system {Gj}.

(ii) Let Zp denote the ring of p-adic integers. Let α ∈ Zp. Show that {α} is
a topological generating set for the (additive) group Zp if and only if α is
not mapped to 0 under the projection map Zp → Z/pZ.

(iii) Show that {α} is a topological generating set for Zp if and only if there
exists β ∈ Zp such that αβ = 1 (where the multiplication is the ring
multiplication of Zp).

(b) (i) Let A be a finitely generated abelian group. Show that Â ∼= Ẑ if and only
if A ∼= Z.

(ii) Let Γ be a finitely generated abstract group. Show that Γ̂ is not isomorphic
to Zp for any prime p.

(c) Let π be a set of prime numbers. Define a subgroup of Q by

Aπ =
{m
n

such that n = pe11 · · · pekk for p1, . . . , pk ∈ π
}
.

(i) Let p be a prime number and let ¬p denote the set of all primes not equal
to p. Define an injective homomorphism A¬p ↪→ Zp.
[You need not give a detailed justification that your function is a homo-
morphism, but should give a reason that it is injective.]

(ii) Deduce that Aπ is residually finite unless π is equal to the set of all primes.

(iii) Let q 6= p be a prime. Show that the only homomorphism from A¬p to
Z/qZ is the trivial homomorphism.

(iv) Deduce that a finite group is a finite quotient of A¬p if and only if it is
isomorphic to Z/pnZ for some n.
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3 (a) Let G = lim←−j∈J Gj be a profinite group, where {Gj}j∈J is an inverse system of

finite groups.

(i) Suppose U is a neighbourhood base of 1 ∈ G, all of whose elements are
normal subgroups of G. Show that G ∼= lim←−U∈U G/U .

[Standard properties of inverse limits may be freely used.]

(ii) Suppose that G is topologically finitely generated. Show that G has only
finitely many open subgroups of index n, for n ∈ N.

(iii) Let Gn be the intersection of all open subgroups of G of index at most n.
Show that if G is topologically finitely generated then G ∼= lim←−G/Gn.

(b) Let G be a topologically finitely generated profinite group.

(i) Define the Hopf property for topological groups.

(ii) Show that G has the Hopf property.

(c) Let m ∈ N.

(i) Let H be a finite group. Show that the function fm : H → H defined by
fm(x) = xm is bijective if and only if m is coprime to |H|.

(ii) Let G = lim←−j∈J Gj be a profinite group, where {Gj}j∈J is an inverse system

of finite groups. Let pj ∈ G → Gj be the projection maps. Let g ∈ G.
Show that there exists x ∈ G such that xm = g if and only if for all j, there
exists x ∈ Gj such that pj(g) = xm.

[Standard properties of inverse limits may be freely used.]

(iii) Deduce that if m is coprime to |Gj | for all j then the continuous function
fm : G→ G, x 7→ xm is bijective.
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4 (a) Let G be a finite group and let M be a G-module.

(i) Define the cochain groups Cn(G,M) for n > 0 and the differentials
dn : Cn−1(G,M)→ Cn(G,M) for n > 1.

(ii) What is meant by a crossed homomorphism φ : G → M? State and prove
a characterisation of the first cohomology group H1(G,M) in terms of
crossed homomorphisms.

(iii) Let φ ∈ Z2(G,M) = ker d3. Define

ψ(g) =
∑

γ∈G
γ−1φ(γ, g).

Show that d2ψ = |G| · φ.

(iv) Deduce that H2(G,Q) = 0 (where Q has trivial G-action).

(v) Find H1(G,Q) and H0(G,Q).

(b) Let G be a finite group.

(i) Consider a short exact sequence of G-modules

0→M1 →M2 →M3 → 0.

What is the relationship between the families of cohomology groups
H•(G,M1), H

•(G,M2) and H•(G,M3)?

[You need not give definitions of any homomorphisms involved.]

(ii) Show that H2(G,Z) ∼= H1(G,Q/Z).

(c) Let Dn = 〈a, b | a2 = 1, bn = 1, ab = b−1a〉 denote the dihedral group of order 2n.

(i) Compute H1(Dn,Z) and H2(Dn,Z).

(ii) Let M denote the Dn-module whose underlying group is Z, and with Dn-
action defined by a · n = −n, b · n = n. Define a map φ : Dn →M by

φ(akbl) =

{
0 if k = 0

1 if k = 1

Using the function φ, show that H1(Dn,M) 6= 0.

[You may use the fact that the elements akbl for k = 0, 1 and 0 6 l 6 n− 1
comprise all elements of Dn.]
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5 (a) Let f : G → H be a group homomorphism and let M be an H-module. Give
M the structure of a G-module by setting g ·m = f(g) ·m for g ∈ G and m ∈M .

(i) Given an extension

1→M → E
π→ H → 1

define a 2-cochain φ representing the extension E and prove that φ is a
cocycle.

(ii) Prove that the group

E′ = {(e, g) ∈ E ×G |π(e) = f(g)}

is an extension of G by M representing the cohomology class f∗([φ]), where
[φ] ∈ H2(G,M) denotes the cohomology class represented by a cocycle φ.

(iii) Show that if f is an injection then the natural map E′ → E is injective.

(b) Let Γ be an abstract group, let ι : Γ → Γ̂ be the canonical map and let G be a
profinite group. Show that a homomorphism f : Γ→ G extends uniquely to a continuous
homomorphism f̂ : Γ̂→ G such that f̂ ι = f .

(c) Let Γ be a residually finite abstract group and let ι : Γ→ Γ̂ be the canonical inclusion.
Let M be a finite Γ̂-module. Consider the natural map ι∗ : H2(Γ̂,M)→ H2(Γ,M).

(i) Let ζ ∈ im ι∗ and let E′ζ denote the extension of Γ by M corresponding to
ζ. Show that E′ζ is residually finite.

[You may assume that any extension of Γ̂ by M is a profinite group.]

(ii) Show that ι∗ is always injective.

END OF PAPER
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