

MATHEMATICAL TRIPOS Part III

Tuesday, 15 June, 2021 12:00 pm to 3:00 pm

PAPER 151

PROFINITE GROUPS AND GROUP COHOMOLOGY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions.

There are **FIVE** questions in total.

The questions carry equal weight.

You may not start to read the questions
printed on the subsequent pages until
instructed to do so by the Invigilator.

1 (a) (i) State an explicit description of the inverse limit of an inverse system of sets.

(ii) Show that an inverse limit of an inverse system of non-empty finite sets is non-empty.

(b) Let $\{G_j\}_{j \in J}$ be an inverse system of finite groups indexed over an inverse system J . Let $G = \varprojlim G_j$ and let $p_j: G \rightarrow G_j$ be the projection map for $j \in J$.

(i) Show that G , with its standard topology, is a topological group.

(ii) Deduce that, for a fixed element $h \in G$, the function

$$c_h: G \rightarrow G, \quad g \mapsto ghg^{-1}$$

is continuous.

(iii) Show that the conjugacy class

$$\text{CCl}(h, G) = \{ghg^{-1} \mid g \in G\}$$

of an element $h \in G$ is a closed set.

(iv) Let $g, h \in G$. Show that g and h are conjugate in G if and only if $p_j(g)$ and $p_j(h)$ are conjugate in G_j for all $j \in J$.

(c) Let Γ be an abstract group. We say that Γ is *conjugacy separable* if for every $g, h \in \Gamma$ such that g is not conjugate to h in Γ there exists a homomorphism $f: \Gamma \rightarrow Q$ from Γ to a finite group Q such that $f(g)$ is not conjugate to $f(h)$ in Q .

Assume that Γ is residually finite, and identify Γ with its image under the canonical inclusion $\Gamma \hookrightarrow \widehat{\Gamma}$.

(i) Let $\gamma \in \Gamma$. Show that $\text{CCl}(\gamma, \widehat{\Gamma})$ is the closure of $\text{CCl}(\gamma, \Gamma)$ in $\widehat{\Gamma}$.

(ii) Show that Γ is conjugacy separable if and only if

$$\text{CCl}(\gamma, \widehat{\Gamma}) \cap \Gamma = \text{CCl}(\gamma, \Gamma)$$

for every $\gamma \in \Gamma$.

2 (a) Let $\{G_j\}_{j \in J}$ be an inverse system of finite groups. Let $G = \varprojlim G_j$ and let $p_j: G \rightarrow G_j$ be the projection maps. We say that $S \subseteq G$ is a *topological generating set* for G if the subgroup of G generated by S is dense in G .

- (i) State a criterion for S to be a topological generating set of G , in terms of the inverse system $\{G_j\}$.
- (ii) Let \mathbb{Z}_p denote the ring of p -adic integers. Let $\alpha \in \mathbb{Z}_p$. Show that $\{\alpha\}$ is a topological generating set for the (additive) group \mathbb{Z}_p if and only if α is not mapped to 0 under the projection map $\mathbb{Z}_p \rightarrow \mathbb{Z}/p\mathbb{Z}$.
- (iii) Show that $\{\alpha\}$ is a topological generating set for \mathbb{Z}_p if and only if there exists $\beta \in \mathbb{Z}_p$ such that $\alpha\beta = 1$ (where the multiplication is the ring multiplication of \mathbb{Z}_p).

(b)

- (i) Let A be a finitely generated abelian group. Show that $\widehat{A} \cong \widehat{\mathbb{Z}}$ if and only if $A \cong \mathbb{Z}$.
- (ii) Let Γ be a finitely generated abstract group. Show that $\widehat{\Gamma}$ is not isomorphic to \mathbb{Z}_p for any prime p .

(c) Let π be a set of prime numbers. Define a subgroup of \mathbb{Q} by

$$A_\pi = \left\{ \frac{m}{n} \text{ such that } n = p_1^{e_1} \cdots p_k^{e_k} \text{ for } p_1, \dots, p_k \in \pi \right\}.$$

- (i) Let p be a prime number and let $\neg p$ denote the set of all primes not equal to p . Define an injective homomorphism $A_{\neg p} \hookrightarrow \mathbb{Z}_p$.
[You need not give a detailed justification that your function is a homomorphism, but should give a reason that it is injective.]
- (ii) Deduce that A_π is residually finite unless π is equal to the set of all primes.
- (iii) Let $q \neq p$ be a prime. Show that the only homomorphism from $A_{\neg p}$ to $\mathbb{Z}/q\mathbb{Z}$ is the trivial homomorphism.
- (iv) Deduce that a finite group is a finite quotient of $A_{\neg p}$ if and only if it is isomorphic to $\mathbb{Z}/p^n\mathbb{Z}$ for some n .

3 (a) Let $G = \varprojlim_{j \in J} G_j$ be a profinite group, where $\{G_j\}_{j \in J}$ is an inverse system of finite groups.

- (i) Suppose \mathcal{U} is a neighbourhood base of $1 \in G$, all of whose elements are normal subgroups of G . Show that $G \cong \varprojlim_{U \in \mathcal{U}} G/U$.
[Standard properties of inverse limits may be freely used.]
- (ii) Suppose that G is topologically finitely generated. Show that G has only finitely many open subgroups of index n , for $n \in \mathbb{N}$.
- (iii) Let G_n be the intersection of all open subgroups of G of index at most n . Show that if G is topologically finitely generated then $G \cong \varprojlim G/G_n$.

(b) Let G be a topologically finitely generated profinite group.

- (i) Define the *Hopf property* for topological groups.
- (ii) Show that G has the Hopf property.

(c) Let $m \in \mathbb{N}$.

- (i) Let H be a finite group. Show that the function $f_m: H \rightarrow H$ defined by $f_m(x) = x^m$ is bijective if and only if m is coprime to $|H|$.
- (ii) Let $G = \varprojlim_{j \in J} G_j$ be a profinite group, where $\{G_j\}_{j \in J}$ is an inverse system of finite groups. Let $p_j: G \rightarrow G_j$ be the projection maps. Let $g \in G$. Show that there exists $x \in G$ such that $x^m = g$ if and only if for all j , there exists $x \in G_j$ such that $p_j(g) = x^m$.
[Standard properties of inverse limits may be freely used.]
- (iii) Deduce that if m is coprime to $|G_j|$ for all j then the continuous function $f_m: G \rightarrow G$, $x \mapsto x^m$ is bijective.

4 (a) Let G be a finite group and let M be a G -module.

- (i) Define the *cochain groups* $C^n(G, M)$ for $n \geq 0$ and the differentials $d^n: C^{n-1}(G, M) \rightarrow C^n(G, M)$ for $n \geq 1$.
- (ii) What is meant by a *crossed homomorphism* $\phi: G \rightarrow M$? State and prove a characterisation of the first cohomology group $H^1(G, M)$ in terms of crossed homomorphisms.
- (iii) Let $\phi \in Z^2(G, M) = \ker d^3$. Define

$$\psi(g) = \sum_{\gamma \in G} \gamma^{-1} \phi(\gamma, g).$$

Show that $d^2\psi = |G| \cdot \phi$.

- (iv) Deduce that $H^2(G, \mathbb{Q}) = 0$ (where \mathbb{Q} has trivial G -action).
- (v) Find $H^1(G, \mathbb{Q})$ and $H^0(G, \mathbb{Q})$.

(b) Let G be a finite group.

- (i) Consider a short exact sequence of G -modules

$$0 \rightarrow M_1 \rightarrow M_2 \rightarrow M_3 \rightarrow 0.$$

What is the relationship between the families of cohomology groups $H^\bullet(G, M_1)$, $H^\bullet(G, M_2)$ and $H^\bullet(G, M_3)$?

[You need not give definitions of any homomorphisms involved.]

- (ii) Show that $H^2(G, \mathbb{Z}) \cong H^1(G, \mathbb{Q}/\mathbb{Z})$.

(c) Let $D_n = \langle a, b \mid a^2 = 1, b^n = 1, ab = b^{-1}a \rangle$ denote the dihedral group of order $2n$.

- (i) Compute $H^1(D_n, \mathbb{Z})$ and $H^2(D_n, \mathbb{Z})$.
- (ii) Let M denote the D_n -module whose underlying group is \mathbb{Z} , and with D_n -action defined by $a \cdot n = -n, b \cdot n = n$. Define a map $\phi: D_n \rightarrow M$ by

$$\phi(a^k b^l) = \begin{cases} 0 & \text{if } k = 0 \\ 1 & \text{if } k = 1 \end{cases}$$

Using the function ϕ , show that $H^1(D_n, M) \neq 0$.

[You may use the fact that the elements $a^k b^l$ for $k = 0, 1$ and $0 \leq l \leq n-1$ comprise all elements of D_n .]

5 (a) Let $f: G \rightarrow H$ be a group homomorphism and let M be an H -module. Give M the structure of a G -module by setting $g \cdot m = f(g) \cdot m$ for $g \in G$ and $m \in M$.

(i) Given an extension

$$1 \rightarrow M \rightarrow E \xrightarrow{\pi} H \rightarrow 1$$

define a 2-cochain ϕ representing the extension E and prove that ϕ is a cocycle.

(ii) Prove that the group

$$E' = \{(e, g) \in E \times G \mid \pi(e) = f(g)\}$$

is an extension of G by M representing the cohomology class $f^*([\phi])$, where $[\phi] \in H^2(G, M)$ denotes the cohomology class represented by a cocycle ϕ .

(iii) Show that if f is an injection then the natural map $E' \rightarrow E$ is injective.

(b) Let Γ be an abstract group, let $\iota: \Gamma \rightarrow \widehat{\Gamma}$ be the canonical map and let G be a profinite group. Show that a homomorphism $f: \Gamma \rightarrow G$ extends uniquely to a continuous homomorphism $\hat{f}: \widehat{\Gamma} \rightarrow G$ such that $\hat{f}\iota = f$.

(c) Let Γ be a residually finite abstract group and let $\iota: \Gamma \rightarrow \widehat{\Gamma}$ be the canonical inclusion. Let M be a finite $\widehat{\Gamma}$ -module. Consider the natural map $\iota^*: H^2(\widehat{\Gamma}, M) \rightarrow H^2(\Gamma, M)$.

(i) Let $\zeta \in \text{im } \iota^*$ and let E'_ζ denote the extension of Γ by M corresponding to ζ . Show that E'_ζ is residually finite.

[You may assume that any extension of $\widehat{\Gamma}$ by M is a profinite group.]

(ii) Show that ι^* is always injective.

END OF PAPER