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In this question you may use without proof the upper bounds ¥(x) < z and
m(x) < x/logx.

(a) Show that there exists a constant ¢ such that

1
Z — =loglogz +c+ O(1/logz),
p<T

where the summation is restricted to prime numbers.

(b) Let w(n) count the number of distinct prime divisors of n. By estimating the sum
> n<z(w(n) — loglog 7)?%, or otherwise, show that for all large =

#{n < x: |w(n) —loglogn| > (loglogn)3/*} = o(x).

2 In this question you may assume any standard properties of the Gamma function
I'(s) without proof, provided you state them clearly. We use o and ¢ to denote the real
and imaginary parts respectively of the complex variable s.

(a) Define, with justification, the Riemann zeta function ((s) as a meromorphic function
in the half-plane o > 0.

(b) State the functional equation for ((s) and sketch a proof, using any method you
prefer. You do not need to justify every technical detail, such as when interchanging
a sum and an integral, but should focus on describing the main ideas in the proof.

(¢) Show that, uniformly for —2 < o <2 and t > 4,
()] = #12771¢ (1 = 8))-
[You may use without proof Stirling’s approximation that
[(s) = vV2rs* 2 (1+ O(1/s]))

uniformly for —4 < o0 < 4 and [t| > 4.]
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s. In

Let o and ¢ denote the real and imaginary parts respectively of the complex variable
this question you may assume without proof that if |¢| > 7/8 and 5/6 < o < 2 then

) = 30 o=+ Ollog(lt +4)

p

where the sum is over all zeros p of ((s) in the region |p — (3/2 + it)| < 5/6. You may
assume without proof any standard properties of ((s) provided you state them clearly.

(a)
(b)

Explain why ((s) # 0 for o > 1.

Prove that there is a constant ¢ > 0 such that

C(s) £0 for 021_@ and |t| > 4.

[You may find the fact that 3 + 4 cos § + cos 20 = 2(1 + cos§)? > 0 useful.]

Show that if o > 1 — ¢/2log|t|, where c is the constant from part (b), and [t| > 8,
then

ég(s) < loglt].

Suppose x is not an integer and 7" > 1. State an explicit formula with error term
expressing ¥ (x) in terms of the zeros p of ((s) with p = 8 + iy where 0 < 8 < 1
and |v| < T.

Prove that the Riemann hypothesis is equivalent to the estimate
P(z) =z + Oc(a'/F9)

for any € > 0.

[You may use without proof Landau’s lemma and any standard properties of ((s) or
the distribution of its zeros provided you state them clearly.)

END OF PAPER
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