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1

Define the symplectic blow up of a standard symplectic ball at a point.

Define a Lefschetz pencil on a compact orientable four-manifold X. Find a formula
for the Euler characteristic of X in terms of the genus of a smooth fibre, the number of
base points, and the number of critical points.

Equip CP2 with the standard symplectic structure. Suppose there is a Lefschetz
pencil on CP2 whose smooth fibres are symplectic. What are all the possible values for
the genus of such a smooth fibre? Justify your answer.

2

Define what is meant by a compatible almost complex structure on a symplectic
manifold (M,ωM ), and show that the space of compatible almost complex structures on
(M,ωM ) is non-empty. Suppose that (N,ωN ) is a compact symplectic manifold and that
there exists a symplectic embedding ι : N → M . Show that there exists a compatible
almost complex structure J on M such that J(TN) = TN .

SupposeX is a Kaehler manifold of real dimension four, and C1, C2 ⊂ X are compact
holomorphic submanifolds intersecting transversally in a single point. Show that there
exists an embedded symplectic submanifold Σ ⊂ X such that [Σ] = [C1]+[C2] ∈ H2(X,Z).
[You may assume there exist local holomorphic coordinates (x, y) near the intersection point
such that C1 = {x = 0} and C2 = {y = 0}.]

Give examples of such X,C1, C2 where:

(a) there exists a Σ and a compatible almost complex structure J on X such that all
of C1, C2 and Σ are almost complex;

(b) there cannot exist a Σ and a compatible almost complex structure J on X such that
all of C1, C2 and Σ are almost complex.
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3

Given a symplectic manifold (M,ω), define the Hamiltonian vector field associated
to a smooth family of functions {ft}t∈[0,1] ∈ C∞(M), and show that its flow, where
defined, acts by symplectomorphisms. Prove that for any v ∈ R2, r > 0 and ε > 0, there
is a compactly supported symplectomorphism of (R2, ω0) which takes B(r) to B(r) + v by
translation, and is the identity outside B(r + |v|+ ε).

Let (X4, ωX) be symplectic. Let Σg denote the smooth surface of genus g. Given
Lagrangian embeddings σ1 : Σg1 → X and σ2 : Σg2 → X intersecting transversally at a
single point, construct a Lagrangian embedding σ : Σg1+g2 → X.

For any l > 1, show that we can find a smooth map ι : T 2 → R4 such that ι∗ω0 = 0
and ι(T 2) self-intersects cleanly in l copies of S1. By using a careful perturbation of ι, or
otherwise, show that the closed connected non-orientable surface of Euler characteristic
−4l admits a Lagrangian embedding into (R4, ω0).

[The standard symplectic form on R2 or R4 is denoted by ω0. Recall that sub-
manifolds N1, N2 ⊂ M intersect cleanly if N1 ∩ N2 is a smooth submanifold such that
Tx(N1 ∩N2) = TxN1 ∩ TxN2 for every x ∈ N1 ∩N2.]
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