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1 Let T be a complete theory in a countable language L.

(a) Define the notion of a prime model of T .

(b) Define the notion of an atomic model of T .

(c) Suppose M |= T is countable and atomic. Prove that M is a prime model of T .

2 Let L be a first-order language and let T be a complete L-theory with infinite
models.

(a) State the Fundamental Theorem of Stability. [You do not need to give a proof.]

(b) Suppose that for any model M |= T , any type in S1(M) is definable. Prove that T
is stable.

(c) Given a model M |= T and a subset X ⊆ Mn, for some n > 1, we say that X is
definable in M if there is an LM -formula ϕ(x1, . . . , xn) such that

X = {ā ∈Mn :M |= ϕ(ā)}.

Assume T is stable and fix models M,N |= T with M � N . Suppose X ⊆ Nn is
definable in N . Prove that X ∩Mn is definable in M.

3 Let L be a countable first-order language and T be a complete L-theory with infinite
models. Fix a sub-language L0 ⊆ L, and let T0 be the set of all L0-sentences ϕ such that
T |= ϕ.

(a) Show that T0 is a complete L0-theory with infinite models.

(b) Suppose T is ℵ0-categorical. Is T0 necessarily ℵ0-categorical (as an L0-theory)?
[Justify your answer. You may use any of the characterisations of ℵ0-categoricity
proved in lecture, provided you state it clearly and correctly.]

(c) Suppose κ > ℵ0 and T is κ-categorical. Is T0 necessarily κ-categorical (as an L0-
theory)? [Justify your answer.]

4 Let L be a first-order language and let T be an L-theory.

(a) Define what it means for T to have quantifier elimination.

(b) Suppose L = {<} is the language of linear orders, and T is the theory of dense
linear orders without endpoints. Prove that T has quantifier elimination. [You may
use any of the characterisations of quantifier elimination proved in lecture, provided
you state it clearly and correctly.]
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