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1 Let k > 4 be an even integer.

(a) Write down the q-expansion
∑

n>0 an(Ek)qn of the normalised Eisenstein series

Ek(τ) =
1

2ζ(k)

∑

(c,d)∈Z2

(c,d)6=(0,0)

1

(cτ + d)k
.

Show that the coefficients an(Ek) are rational numbers. Show that the coefficients are
integers when k = 4 or k = 6.

(b) Prove that there exists a basis f0, . . . , fN of Mk(SL2(Z)) such that for each
i = 0, . . . , N , the q-expansion of fi is fi(τ) = qi +

∑
n>N+1 an(fi)q

n with an(fi) ∈ Z
for all n. [You may assume the formula for the number of zeroes of a modular form
f ∈Mk(SL2(Z)).]

(c) Write a1(Ek) = r/s, where r, s are coprime integers. Show that if a prime
number p divides s, then there exists a cuspidal modular form f ∈ Sk(SL2(Z)) such that
an(f) ∈ Z and an(f) ≡ σk−1(n) mod p for all n > 1, where σk−1(n) =

∑
d∈N,d|n d

k−1.

(d) Prove the identity

σ7(n) = σ3(n) + 120

n−1∑

i=1

σ3(i)σ3(n− i)

for n ∈ N.

[You may use that ζ(k)/πk ∈ Q and in particular that ζ(4) = π4/(2 × 9 × 5),
ζ(6) = π6/(27× 5× 7), and ζ(8) = π8/(2× 27× 25× 7).]

2 Let N, k be a positive integers.

(a) Define the congruence subgroup Γ1(N) of SL2(Z) and the spaces Mk(Γ1(N))
and Sk(Γ1(N)).

(b) Prove that if f ∈ Sk(Γ1(N)) then f |k[αN ] ∈ Sk(Γ1(N)), where

αN =

(
0 −1
N 0

)

and f |k[αN ](τ) = det(αN )k−1f(αNτ)j(αN , τ)−k.

(c) Prove that if f(τ) =
∑

n>1 an(f)qn ∈ Sk(Γ1(N)) and L(f, s) =
∑

n>1 an(f)n−s,
then L(f, s) admits an analytic continuation to all s ∈ C and satisfies the functional
equation

Λ(f, s) = ikN1−k/2Λ(f |k[αN ], k − s),
where Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s). [You may assume that for any f ∈ Sk(Γ1(N)),
the series L(f, s) is absolutely convergent in the region Re(s) > 1 + k/2, and any relevant
properties of the function Γ(s).]
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3 Let h = {τ ∈ C | Im(τ) > 0} denote the complex upper half-plane.

(a) Let Γ 6 SL2(Z) be a congruence subgroup. Describe the topology and co-
ordinate charts on the Riemann surface X(Γ).

(b) Let π : h→ Γ\h be the quotient map and let f be a modular function of weight
0 and level Γ. Show that there is a unique morphism ϕf : X(Γ) → Ĉ to the Riemann
sphere such that f = ϕf |Γ\h ◦ π.

(c) Write down a formula for the genus of X(Γ), and use it to prove that the genus
is 0 when Γ = Γ0(3).

(d) Show that f(τ) = ∆(τ)/∆(3τ) is a modular function of weight 0 and level Γ0(3),
where ∆(τ) = (E4(τ)3−E6(τ)2)/1728. Decide, with proof, whether ϕf is an isomorphism.
[You may assume any facts you need concerning the modular form ∆ ∈ S12(SL2(Z)).]
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