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1

(a) State and prove a version of Hensel’s Lemma.

(b) Find the number of solutions to the equation X3 + 5X − 12 = 0 in Qp for
p = 2, 3, 5.

(c) Let p be an odd prime. Show that an element x ∈ Q×
p is a (p− 1)mth-power in

Qp for all m > 1 coprime to p, if and only if x ∈ 1 + pZp.

2 (a) State and prove a classification of the (non-trivial) non-archimedean absolute
values on Q up to equivalence. Explain with proof how this result generalises to
number fields. [Standard facts about Dedekind domains and DVR’s may be used without
justification]

(b) Let (K, | · |) be a complete discretely valued field and L/K a finite extension.
Show that if | · | extends to an absolute value | · |L on L, then this extension is unique up
to equivalence, and that L is complete with respect to | · |L.

Give an example to show how the uniqueness can fail if K is not assumed to be
complete.

3 (a) Let K be a complete discretely valued field with char(K) = p > 0 and assume
that its residue field k is perfect. Show that there is a unique ring homomorphism
[·] : k → OK lifting the identity on k and use this to show that K ∼= k((t)). If in
addition, K is locally compact, show that k is finite.

(b) Let p be an odd prime and let K ∼= Fp((t)).

(i) Let L/K be a finite Galois extension. Define the higher ramification groups
Gs(L/K) for s ∈ Z>−1.

(ii) Construct a finite Galois extension L/K satisfying both of the following
conditions

G−1(L/K)/G0(L/K) ∼= Z/2Z, G0(L/K) ∼= Z/(p2 − 1)Z.
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4 (a) Let L/K be a finite extension of p-adic fields. Show that L/K is totally ramified
if and only if L = K(α), where α is a root of an Eisenstein polynomial.

(b) Let ζpn be a primitive pn-th root of unity and let L = Qp(ζpn). Show that L/Qp

is a totally ramified Galois extension and that there is an isomorphism

Gal(L/Qp) ∼= (Z/pnZ)×.

Deduce that there is an isomorphism Gal(Qp(ζp∞)/Qp) ∼= Z×p , where Qp(ζp∞) :=⋃∞
n=1Qp(ζpn).

(c) State the local Kronecker–Weber theorem for Qp and describe how this can be
used to define the Artin map

ArtQp : Q×p →W (Qab
p /Qp).

5 (a) State the definition of a formal group law and show that if F (X,Y ) ∈ R[[X,Y ]]
is a formal group law over a ring R, there exists a power series i(X) ∈ R[[X]] with
i(X) ≡ −X mod X2 such that F (X, i(X)) = 0.

(b) Define the formal additive group Ĝa and the formal multiplicative group Ĝm.
Show that if R is a Q-algebra, there is an isomorphism Ĝa → Ĝm.

(c) Recall that EndR(F ) is a ring, hence there is a homomorphism [·]F : Z →
EndR(F ). Compute [n]Ĝa

∈ R[[X]] and [n]Ĝm
∈ R[[X]]. Deduce that if R is a field of

characteristic p > 0, there are no non-zero homomorphisms from Ĝa to Ĝm.
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