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1 Define the homotopy groups of a space. What does it mean to say that a map
is a weak homotopy equivalence? What does it mean to say that a map is n-connected?
Define the term CW complex.

Prove that any space is weakly homotopy equivalent to a CW complex.

Give an example to show that a path-connected space X having Hn(X;Z) = 0 and
πn(X,x0) = 0 need not be weakly homotopy equivalent to a CW-complex with no n-cells.

2 What does it mean to say that a map π : E → B is a Serre fibration? Describe
the long exact sequence on homotopy groups associated to a Serre fibration. [You do not
need to prove that it is exact, but should carefully describe all the maps involved.]

Prove carefully that a fibre bundle is a Serre fibration.

Show that the inclusion i : RPn → CPn induces the trivial map on all homotopy
groups, for all n > 1.

3 Let π : E → Sn be a Serre fibration with fibre F := π−1(∗) over the basepoint
∗ ∈ Sn, and suppose that n > 2. Construct, using the Serre spectral sequence of π,
a homomorphism ∆ : Hi(F ) → Hi+n−1(F ) and a long exact sequence involving ∆ and
H∗(E).

Calculate the integral homology groups and cohomology ring of the homotopy fibre
of a map fm : Sn → Sn of degree m > 0, for each n > 2. [Pay particular attention to the
ring structure when n = 2.]

4 Calculate the rings H∗(K(Z/n, 1);Z) and H∗(K(Z/n, 1);Z/p), for n > 1 an integer
and p an odd prime number.

Let u ∈ H1(K(Z/p, 1);Z/p) denote a generator, and consider the map

f : K(Z/p, 1)×K(Z/p, 1) −→ K(Z/p, 2)

representing the cohomology class u × u. Show that the homotopy fibre F of the map f
is a K(G, 1) and, by expressing F as the total space of a fibration and calculating part of
its cohomology, prove that the group G is not abelian.
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5 Let π : E → B be a Serre fibration over a path-connected space B, let b0 ∈ B
and suppose that F := π−1(b0) is also path-connected. Define what it means for a pair
(x, y) ∈ Hn(F ) × Hn+1(B) to be transgressive, and state the relationship between this
notion and the Serre spectral sequence for π : E → B.

State and prove Kudo’s transgression theorem, describing the properties of Steenrod
squares which you use.

Derive a formula for the action of the Steenrod operations on H∗(RP∞;Z/2) =
Z/2[x], describing the properties of Steenrod squares which you use.

Prove that for any space Y and any class y ∈ Hn(Y ;Z/2) we have Sq1Sq1(y) = 0.
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