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1 Let R be a Dedekind domain, K its field of fractions, and S the integral closure of
R in a finite separable extension L/K. Explain what is meant by the discriminant ideal
disc(S/R) ⊂ R and the inverse different D−1

S/R ⊂ L. Show that the inverse different is a

fractional ideal of S, whose inverse DS/R is an ideal of S, and that NL/KDS/R = disc(S/R).

Show that the class of disc(S/R) in the ideal class group Cl(R) is a square.

[You may assume without proof the compatibility of the different and discriminant
with localisation.]

2 Let K be a number field. Define the ring of adeles AK of K, and the topology on
AK . Show that K ⊂ AK is discrete and that the quotient AK/K is compact. [You may
use without proof the isomorphism AQ ⊗Q K ' AK .]

Define the group of ideles JK of K, and the topology on JK . Show that the inclusion
j : JK ↪→ AK is continuous. By considering the sequence (x(i))i>1 in JK , where for each
i > 1,

x(i)v =

{
pi if v|pi, the i-th prime number

1 otherwise

show that j is not a homeomorphism onto its image.

3 Let F be a finite extension of Qp. What is the Schwartz space S(F )? Define the

Fourier transform f̂ of a function f ∈ S(F ), and compute f̂ when f is the characteristic
function of OF .

Show that if f ∈ S(F ), a, b ∈ F with a 6= 0 and g(x) = f(ax + b), then
ĝ(y) = ψ(−by/a) |a|−1 f̂(y/a). Deduce that Fourier transform maps S(F ) to itself.

4 (i) Show that there is no Galois extension L/Q with Galois group S3 which is
unramified outside of 7.

(ii) Compute the ray class group Clm(K), where K = Q(
√
−6) and m = 2(v2)+2(v3)

where for p ∈ {2, 3}, vp is the unique place dividing p. [You may use without proof that
K has class number 2.]

END OF PAPER

Part III, Paper 123


