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1 State the Yoneda Lemma, and use it to prove that if C is a small category then
every object of the functor category [C,Set] is an epimorphic image of a projective object.
[You may assume the result that epimorphisms in [C,Set] are pointwise surjective natural
transformations.]

A functor F : C → Set is called a monofunctor if Ff is injective for every morphism
f of C. Show that the following conditions on a small category C are equivalent:

(i) Every morphism of C is monic.

(ii) Every representable functor C → Set is a monofunctor.

(iii) Every functor C → Set is an epimorphic image of a monofunctor.

Under what conditions on C is every functor C → Set a monofunctor? Justify your
answer.

2 Given an adjunction (F : D → C a G : C → D), define the unit and counit of the
adjunction, and explain briefly how the adjunction may be recovered from its unit and
counit.

Given an adjunction (F a G), show that the following conditions are equivalent:

(i) F is full and faithful.

(ii) The unit of the adjunction is an isomorphism.

(iii) There exists an isomorphism between GF and the identity functor on D.

Hence or otherwise show that if G has a right adjoint H as well as a left adjoint F , then
H is full and faithful if and only if F is.

Now suppose given a double adjunction (F a G a H) where G is full and faithful;
let η and ε denote the unit and counit of (F a G), and α and β those of (G a H). Show
that the composites (αF )−1(Hη) : H → HGF → F and (Fβ)(εH)−1 : H → FGH → F are
equal [hint: consider their images under G]. Show also that this natural transformation
θ : H → F is pointwise monic (respectively epic) if and only if F (respectively H) acts
faithfully on morphisms whose domains (respectively codomains) are in the image of G.
[Given a morphism f : B → HA, consider G(θAf).]
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3 Explain carefully what is meant by a (or the) colimit of a diagram D : J → C.
If I and J are small categories, a functor F : I → J is said to be final if, for every

j ∈ ob J , the category (j ↓ F ) is (nonempty and) connected. Show that if F : I → J is
final then, for any D : J → C, each cone under DF extends uniquely to a cone under D,
and deduce that if C has colimits of shape I then it has colimits of shape J .

A small category J is said to be sifted if it is connected and the diagonal functor
J → J×J is final. Show that if J is sifted then the functor colimJ : [J,Set]→ Set preserves
finite products. [Hint: Given diagrams D,E : J ⇒ Set, show that colimJD × colimJE
may be expressed as the colimit of a suitable diagram of shape J × J . You may assume
the result that functors of the form (−)×A : Set→ Set have right adjoints.]

4 Explain what is meant by a monad T on a category C, and define the Eilenberg–
Moore category CT and the Kleisli category CT associated with such a monad. [You need
not verify that they are categories.]

Let T = (T, η.µ) be a monad on C, and let D be an arbitrary category. Show that
the functors T∗ : [D, C] → [D, C] and T ∗ : [C,D] → [C,D], defined on objects by F 7→ TF
and G 7→ GT respectively, both carry monad structures, and that the Eilenberg–Moore
categories of the resulting monads T∗ and T∗ are respectively equivalent to [D, CT] and to
[CT,D]. [Hint for the latter: Show that T∗-algebra structures on a functor G : C → D are
equivalent to factorizations of G through FT : C → CT.]

5 Define a regular category, and prove that in a regular category regular epimorphisms
coincide with covers (that is, strong epimorphisms).

Let C be a category with finite limits, and let D be a reflective subcategory of C
for which the reflector L (the left adjoint of the inclusion) preserves finite limits. For any
object A of C, we define a unary operation c on (isomorphism classes of) subobjects of A
by taking c(A′� A) to be the left edge of the pullback square

c(A′) > LA′

∨ ∨

∨ ∨
A

ηA
> LA

where η is the unit of the adjunction. Show that c is a closure operation on SubC(A) (that
is, it is order-preserving and satisfies A′ 6 c(A′) ∼= c(c(A′)) for any A′ � A), and that
closure commutes with pullback along any morphism of C. Show also that if A ∈ obD, then
a subobject A′� A belongs to D if and only if it is closed (i.e. isomorphic to its closure).
Deduce that if C is regular then so is D.

[You may assume that D coincides with the full subcategory Fix(L) on objects A for
which ηA is an isomorphism.]
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6 Explain what is meant by a normal monomorphism in a pointed category. If C is
pointed and has kernels and cokernels, show that a monomorphism in C is normal if and
only if it is the kernel of its own cokernel.

Define an abelian category, and show that an abelian category is regular.

By a chain complex C• in an abelian category A, we mean an infinite sequence

· · · > Cn+1

dn+1
> Cn

dn
> Cn−1

dn−1
> Cn−2 > · · ·

of objects and morphisms such that dndn+1 = 0 for all n ∈ Z. Show that chain complexes
in A may be identified with additive functors Z → A, where Z is a suitable additive
category with ob Z = Z and

Z (n, p) = Z if p = n or n− 1
= {0} otherwise.

Given a chain complex C•, we write Zn(C•) � Cn for the kernel of dn : Cn → Cn−1,
Bn(C•) � Cn for the image of dn+1, and Zn(C•) � Hn(C•) for the cokernel of
Bn(C•) � Zn(C•). Show that the definition of Hn is self-dual (i.e., that if we regard
C• as a chain complex in Aop, and follow the construction just given, we arrive at the
same object).

END OF PAPER
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