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1 Let X be obtained from the two-torus S1 × S1 by first attaching a two-cell along
the circle {θ0} × S1 by a degree one homeomorphism, and by then collapsing the circle
S1 × {θ1} to a point. Exhibit a cell structure on X, and hence or otherwise compute its
homology groups.

State the excision theorem.

Compute the groups H∗(X,X\{x};Z) for each x ∈ X, and deduce that any
homeomorphism φ : X → X must preserve the subset (which is the image in X of)
[{θ0} × S1].

Need every homeomorphism of X preserve the point p = [(θ0, θ1)]? Briefly justify
your answer.

2 For a space X, let ΣX denote the suspension of X. Compute the homology groups
of ΣX in terms of those of X. Assuming that X is homotopy equivalent to a finite cell
complex, express the Euler characteristic χ(ΣX) in terms of χ(X). Hence, or otherwise,
prove that if j > 0 then Σj(CP2) is not homotopy equivalent to A× A, for any finite cell
complex A.

Explain how to define a degree for homeomorphisms Rn → Rn, and show that your
definition has the properties that

• deg(f) ∈ ±1;

• deg(f ◦ g) = deg(f) · deg(g);

• deg(A) = sign(det(A)) if A ∈ GL(n,R).

For a space Y , let σ : Y 4 → Y 4 be the cyclic permutation

σ(y1, y2, y3, y4) = (y4, y1, y2, y3).

By considering σ2, or otherwise, prove that there is no topological space Y for which Y ×Y
is homeomorphic to R2n+1.
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3 Let X be a topological space and suppose m ∈ Z satisfies m > 1. Define the
Bockstein homomorphisms

β̃ : H i(X;Z/m)→ H i+1(X;Z)

and
β : H i(X;Z/m) −→ H i+1(X;Z/m)

and explain how they are related. Show that

β(x ^ y) = β(x) ^ y + (−1)|x| x ^ β(y)

where ^ denotes cup-product and | · | denotes the cohomological degree.

Now suppose p > 2 is prime. Stating clearly any other results you use, prove that
there is no closed five-dimensional manifold M which satisfies

H i(M ;Z) =





Z i = 0, 5

Z/p i = 3

0 otherwise.

[Hint: it may help to prove that β : H2(M ;Z/p) → H3(M ;Z/p) would be an
isomorphism, and to consider β(x ^ x) for x ∈ H2(M ;Z/p).]

4 Let E → X be an oriented vector bundle of real rank k. Define the Euler class of
E.

Let k > 1. Let Ek(X) ⊂ Hk(X;Z) be the set of Euler classes of oriented rank k
vector bundles over X. Stating carefully any general results you use, prove that E2k(S2k)
contains all even integers. Deduce that if M is a closed 2k-dimensional manifold then
2H2k(M ;Z) ⊂ E2k(M). Give an example of a pair {M,k} where this inclusion is strict.

If dimR(M) = 2k + 1, is there always an inclusion 2H2k+1(M ;Z) ⊂ E2k+1(M)?
Briefly justify your answer.

Prove that (for k, l > 1) cup-product

Hk(X;Z)⊗H l(X;Z) −→ Hk+l(X;Z) (1)

induces a map
Ek(X)⊗ El(X) −→ Ek+l(X). (2)

Give examples to show that (2) need not be injective or surjective, briefly justifying your
answers.
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