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1 (a) Let S and T be graded rings and ϕ : S → T be a graded ring homomorphism,
i.e., ϕ preserves degrees. Let

U := {p ∈ ProjT | p 6⊇ ϕ(S+)},

where S+ ⊆ S is the irrelevant ideal.

Show that U is an open subset of ProjT .

Show that ϕ determines a morphism

f : U → ProjS.

(b) Now suppose that in part (a), ϕ induces an isomorphism ϕd : Sd → Td for all
d > d0, for some non-negative integer d0. Show that U = ProjT and that the induced
morphism f : ProjT → ProjS is an isomorphism.

2 Let k be a field, and let X = Spec k[x, y, z, w]/(xy − zw) ⊆ A4
k.

(a) Show that D = V (x, z) is a prime (Weil) divisor on X and that ClX ∼= Z is
generated by the divisor class of D. [Note: you may assume that X satisfies the hypotheses
for the definition of class group.]

(b) Let Y = X \ {O} where O denotes the origin in A4
k. Show that DY := D ∩ Y

defines a Cartier divisor on Y , and describe the line bundle OY (DY ) via transition maps
on a suitable open cover of Y .

(c) Show that there is a morphism f : Y → P1
k such that f∗OP1

k
(1) ∼= OY (DY ).

3 (a) Let A and B be rings, ϕ : B → A a ring homomorphism inducing a morphism
f : SpecA → SpecB. Let M be an A-module, and let MB denote the B-module with
underlying group M and multiplication b·m = ϕ(b)m for b ∈ B, m ∈M . Show an equality
of sheaves

f∗(M̃) = M̃B.

(b) Let f : X → Y be a morphism of schemes with Y affine and let F be a quasi-
coherent sheaf on X. Suppose further that X is Noetherian. By choosing a suitable affine
cover {Ui} of X, a suitable affine cover {Uijk} of Ui ∩ Uj , and a suitable morphism of
sheaves ⊕

i

f∗(F|Ui)→
⊕

i,j,k

f∗(F|Uijk
),

show that f∗F is a quasi-coherent sheaf on Y .
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4 Let X be a topological space.

(a) If F is a sheaf of abelian groups on X and s ∈ Γ(X,F), we write

Supp s = {p ∈ X | 0 6= sp ∈ Fp},

where sp denotes the germ of s at p. Show that Supp s is a closed subset of X.

(b) Let Z ⊆ X be a closed subset of X. We define

ΓZ(X,F) := {s ∈ Γ(X,F) | Supp s ⊆ Z}.

Show that the sequence

0→ ΓZ(X,F)→ Γ(X,F)→ Γ(X \ Z,F) (1)

is exact, with surjectivity on the right if F is flasque.

Show that if
0→ F1 → F2 → F3 → 0 (2)

is an exact sequence of sheaves of abelian groups on X, then

0→ ΓZ(X,F1)→ ΓZ(X,F2)→ ΓZ(X,F3) (3)

is exact. Show furthermore that if F1 is flasque, then surjectivity also holds on the right.

[Note: you may use the corresponding surjectivity statement for the functor Γ(X, ·)
when F1 is flasque without proof.]

(c) If Z ⊆ X is a closed subset as in (b), we denote by H i
Z(X, ·), i > 0, the right

derived functors of ΓZ(X, ·), whose existence you may assume without proof.

Now let X = Spec k[x, y], and let Z = V (x, y). Calculate H i
Z(X,OX).

You may use the following properties of the functors H i
Z without proof:

1. H0
Z(X,F) = ΓZ(X,F);

2. Given an exact sequence of sheaves (2), there is a long exact sequence

· · · → H i−1
Z (X,F3)→ H i

Z(X,F1)→ H i
Z(X,F2)→ H i

Z(X,F3)→ H i+1
Z (X,F1)→ · · · .

3. For a sheaf F on X, the exact seqeuence of (1) extends to a long exact sequence

· · · → H i−1(X\Z,F)→ H i
Z(X,F)→ H i(X,F)→ H i(X\Z,F)→ H i+1

Z (X,F)→ · · · .

END OF PAPER

Part III, Paper 113


