MATHEMATICAL TRIPOS Part III

Thursday, 8 June, 2021 $\,$ 12:00 pm to 3:00 pm

PAPER 113

ALGEBRAIC GEOMETRY

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

UNIVERSITY OF CAMBRIDGE

1 (a) Let S and T be graded rings and $\varphi: S \to T$ be a graded ring homomorphism, i.e., φ preserves degrees. Let

$$U := \{ \mathfrak{p} \in \operatorname{Proj} T \, | \, \mathfrak{p} \not\supseteq \varphi(S_+) \},\$$

where $S_+ \subseteq S$ is the irrelevant ideal.

Show that U is an open subset of $\operatorname{Proj} T$.

Show that φ determines a morphism

$$f: U \to \operatorname{Proj} S.$$

(b) Now suppose that in part (a), φ induces an isomorphism $\varphi_d : S_d \to T_d$ for all $d \ge d_0$, for some non-negative integer d_0 . Show that $U = \operatorname{Proj} T$ and that the induced morphism $f : \operatorname{Proj} T \to \operatorname{Proj} S$ is an isomorphism.

2 Let k be a field, and let $X = \operatorname{Spec} k[x, y, z, w]/(xy - zw) \subseteq \mathbb{A}_k^4$.

(a) Show that D = V(x, z) is a prime (Weil) divisor on X and that $\operatorname{Cl} X \cong \mathbb{Z}$ is generated by the divisor class of D. [Note: you may assume that X satisfies the hypotheses for the definition of class group.]

(b) Let $Y = X \setminus \{O\}$ where O denotes the origin in \mathbb{A}_k^4 . Show that $D_Y := D \cap Y$ defines a Cartier divisor on Y, and describe the line bundle $\mathcal{O}_Y(D_Y)$ via transition maps on a suitable open cover of Y.

(c) Show that there is a morphism $f: Y \to \mathbb{P}^1_k$ such that $f^*\mathcal{O}_{\mathbb{P}^1_k}(1) \cong \mathcal{O}_Y(D_Y)$.

3 (a) Let A and B be rings, $\varphi : B \to A$ a ring homomorphism inducing a morphism $f : \operatorname{Spec} A \to \operatorname{Spec} B$. Let M be an A-module, and let M_B denote the B-module with underlying group M and multiplication $b \cdot m = \varphi(b)m$ for $b \in B, m \in M$. Show an equality of sheaves

$$f_*(\widetilde{M}) = \widetilde{M_B}$$

(b) Let $f: X \to Y$ be a morphism of schemes with Y affine and let \mathcal{F} be a quasicoherent sheaf on X. Suppose further that X is Noetherian. By choosing a suitable affine cover $\{U_i\}$ of X, a suitable affine cover $\{U_{ijk}\}$ of $U_i \cap U_j$, and a suitable morphism of sheaves

$$\bigoplus_{i} f_*(\mathcal{F}|_{U_i}) \to \bigoplus_{i,j,k} f_*(\mathcal{F}|_{U_{ijk}}),$$

show that $f_*\mathcal{F}$ is a quasi-coherent sheaf on Y.

Part III, Paper 113

4 Let X be a topological space.

(a) If \mathcal{F} is a sheaf of abelian groups on X and $s \in \Gamma(X, \mathcal{F})$, we write

$$\operatorname{Supp} s = \{ p \in X \mid 0 \neq s_p \in \mathcal{F}_p \},\$$

where s_p denotes the germ of s at p. Show that Supp s is a closed subset of X.

(b) Let $Z \subseteq X$ be a closed subset of X. We define

$$\Gamma_Z(X,\mathcal{F}) := \{ s \in \Gamma(X,\mathcal{F}) \, | \, \operatorname{Supp} s \subseteq Z \}.$$

Show that the sequence

$$0 \to \Gamma_Z(X, \mathcal{F}) \to \Gamma(X, \mathcal{F}) \to \Gamma(X \setminus Z, \mathcal{F})$$
(1)

is exact, with surjectivity on the right if \mathcal{F} is flasque.

Show that if

$$0 \to \mathcal{F}_1 \to \mathcal{F}_2 \to \mathcal{F}_3 \to 0 \tag{2}$$

is an exact sequence of sheaves of abelian groups on X, then

$$0 \to \Gamma_Z(X, \mathcal{F}_1) \to \Gamma_Z(X, \mathcal{F}_2) \to \Gamma_Z(X, \mathcal{F}_3)$$
(3)

is exact. Show furthermore that if \mathcal{F}_1 is flasque, then surjectivity also holds on the right.

[Note: you may use the corresponding surjectivity statement for the functor $\Gamma(X, \cdot)$ when \mathcal{F}_1 is flasque without proof.]

(c) If $Z \subseteq X$ is a closed subset as in (b), we denote by $H_Z^i(X, \cdot)$, $i \ge 0$, the right derived functors of $\Gamma_Z(X, \cdot)$, whose existence you may assume without proof.

Now let $X = \operatorname{Spec} k[x, y]$, and let Z = V(x, y). Calculate $H_Z^i(X, \mathcal{O}_X)$.

You may use the following properties of the functors H_Z^i without proof:

- 1. $H^0_Z(X, \mathcal{F}) = \Gamma_Z(X, \mathcal{F});$
- 2. Given an exact sequence of sheaves (2), there is a long exact sequence

$$\cdots \to H_Z^{i-1}(X, \mathcal{F}_3) \to H_Z^i(X, \mathcal{F}_1) \to H_Z^i(X, \mathcal{F}_2) \to H_Z^i(X, \mathcal{F}_3) \to H_Z^{i+1}(X, \mathcal{F}_1) \to \cdots$$

3. For a sheaf \mathcal{F} on X, the exact sequence of (1) extends to a long exact sequence

$$\cdots \to H^{i-1}(X \setminus Z, \mathcal{F}) \to H^i_Z(X, \mathcal{F}) \to H^i(X, \mathcal{F}) \to H^i(X \setminus Z, \mathcal{F}) \to H^{i+1}_Z(X, \mathcal{F}) \to \cdots$$

END OF PAPER

Part III, Paper 113