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(a) Find a majorant function g(x) for the function f(x) = cos(x1 + x2 + · · · + xn) for
every x ∈ Rn. [Express your answer in analytic form and not only as a power series].

(b) Consider the second order partial differential equation

ut − (x2 − 1)uxx = 0 for (x, t) ∈ R2 . (∗)

(i) Find the characteristic curves to this equation.

(ii) Let Σ be the analytic curve: x = sin s, t = s2 for s ∈ R. Find all the values
of s ∈ R for which the corresponding points on Σ are characteristic points for
equation (∗).

(iii) Consider equation (∗) with the data

u(0, t) = cos t , ux(0, t) = 0 . (∗∗)

For which t ∈ R does the above initial value problem, (∗) and (∗∗), have
an analytic solution in the neighbourhood of (0, t)? [Justify your answer,
carefully stating any theorems you use.]
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(a) Let U = {(x, y) ∈ R2 : x2 + y2 < 1/4}.

(i) Show that there exists a function u ∈ H1(U) such that u 6∈ L∞(U) .

(ii) Let {un}∞n=1 be a bounded sequence in H1(U). Show that there is a
subsequence {unk

}∞k=1 and u ∈ H1(U) such that limk→∞ ‖unk
− u‖Lp(U) = 0 ,

for each p ∈ [1,∞) . [The same subsequence for all p ∈ [1,∞).]

(b) Let U ⊂ R3 be an open bounded set.

(i) Show that there is a constant c > 0 such that for each v ∈ H1(U) we have:

‖v‖L3(U) 6 c‖v‖1/2
L2(U)

‖v‖1/2
H1(U)

.

(ii) Let v, w ∈ H1(U) be given. Define the map Φ : H1(U)→ R :

Φ(u) =

∫

U

(∂u
∂x

+
∂u

∂y
+

∂u

∂z

)
vw dxdydz , for every u ∈ H1(U) .

Show that Φ is a linear bounded functional.

(iii) Let {un}∞n=1 be a bounded sequence in H1(U). Show that there is a
subsequence {unk

}∞k=1 and u ∈ H1(U) such that

lim
k→∞

∫

U

(∂unk

∂x
+
∂unk

∂y
+
∂unk

∂z

)
unk

w dxdydz =

∫

U

(∂u
∂x

+
∂u

∂y
+
∂u

∂z

)
uw dxdydz ,

for every w ∈ H1(U).
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Let U ⊂ R3 be an open bounded set with ∂U ∈ C2 and f ∈ L2(U). Consider the
nonlinear elliptic boundary value problem:

−∆u− |Du|2u = f in U (†)
u = 0 on ∂U .

(i) Use elliptic theory and regularity [without proof] to show that the map Φ introduced
below is well defined.

Φ : H2(U) ∩ H1
0 (U) → H2(U) ∩ H1

0 (U), where for every w ∈ H2(U) ∩ H1
0 (U)

v = Φ(w) is defined by solving the elliptic boundary value problem:

−∆v − |Dw|2w = f in U

v = 0 on ∂U .

(ii) Show that there exist r,R > 0 (small enough) such that Φ is a contraction map from
the closed ball BR(0) = {w ∈ H2(U)∩H1

0 (U) : ‖w‖H2(U) 6 R} into itself, provided
‖f‖L2(U) 6 r. Hence deduce that the map Φ has a fixed point and conclude that
the boundary value problem (†) has a solution.

[State carefully the theorems that you use without proof].
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