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1

Let V be a finite dimensional complex vector space. Describe the Lie algebra
structure on the space End(V ) of linear maps from V to V .

What does it mean for a Lie subalgebra L of End(V ) to be (i) abelian, (ii) nilpotent
or (iii) soluble?

Show that if L is nilpotent and L1 is a maximal proper Lie subalgebra of L then L1

is an ideal of L. Give an example where L is soluble with a maximal Lie subalgebra L1

which is not an ideal.

Define what it means for a linear map D : L −→ L to be a derivation of L. What
does it mean for D to be an inner derivation?

Now suppose L is non-zero and nilpotent. Show that there is a derivation of L that
is not inner. Is the same necessarily true if ‘nilpotent’ is replaced by ‘soluble’?

2

Let L be a finite dimensional complex Lie algebra. What does it mean for L to be
semisimple?

Now suppose that L is semisimple. Define the Killing form BL and show that it is
non-degenerate. [You may assume Cartan’s solubility criterion if clearly stated.]

Define what it means for an abelian Lie subalgebra H to be a Cartan subalgebra of
L.

Let H1 be an abelian Lie subalgebra of L. Does H1 necessarily lie in some Cartan
subalgebra H of L? Justify your answer.

Now let H be a Cartan subalgebra of L. Show that the restriction of BL to H is
non-degenerate. [You may assume that H is the centraliser of some h ∈ H.]

Describe the Cartan decomposition of L with respect to H, explaining why it exists.
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What is meant by a finite dimensional Lie algebra representation of a complex Lie
algebra L? What does it mean for such a representation to be irreducible?

Define the complex Lie algebra sl2, and describe its irreducible finite dimensional
representations. [You do not need to prove that your list is complete, but you should
establish irreducibility in each case.] Deduce that sl2 is a simple Lie algebra.

Let L be a semisimple finite dimensional complex Lie algebra with Cartan subal-
gebra H. Let α be a root of L (with respect to H) with associated root space Lα. Let Uα

be the Lie subalgebra of L generated by Lα and L−α. Show that there is a copy of sl2 in
Uα.

By using the representation theory of sl2, or otherwise, show that each root space Lα

is one dimensional. [You may assume that any non-zero finite dimensional representation
of sl2 is the direct sum of irreducible ones.]

Let α and β be roots, and suppose that β 6= mα for any integer m. The α-string
through β is the longest arithmetic progression of the form β − qα, . . . , β, . . . , β + pα (for
non-negative integers p and q) all of whose elements are roots. Show that the sum of the
root spaces associated with the elements of the α-string form a simple sl2-module and
that for x ∈ [Lα, L−α], the equation β(x) = (q − p)α(x)/2 holds.

4

Let R be a finite dimensional associative algebra over an algebraically closed field
k.

Define what is meant by the Jacobson radical J of R.

State the Artin-Wedderburn theorem describing the structure of R/J .

Show that J is a nilpotent ideal.

For 1 6 i 6 n, let Pi be an indecomposable right R-module such that Pi/PiJ is a
simple right R module Si. Suppose that Si is not isomorphic to Sj if i 6= j.

Show that EndR(Pi) is local.

Let M be the direct sum of the modules Pi (with multiplicity one). Show that there
is a surjective ring homomorphism θ : EndR(M) −→ EndR(M/MJ). Show also that ker θ
is a nilpotent ideal of EndR(M). Deduce that EndR(M) is a basic algebra with Jacobson
radical equal to ker θ.
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What is meant by a simply-laced positive definite Coxeter graph?

State the classification of such graphs.

Let Q be the quiver with two vertices with a single arrow from vertex 1 to vertex 2.

Describe the root system associated with the underlying Coxeter graph of this
quiver, choosing a base of simple roots. How many possible choices are there? Describe
the Weyl group of this root system. Define what is meant by a Coxeter element of this
Weyl group. How many are there, and what is their order?

Let k be an algebraically closed field. Using this quiver Q as an example, explain
how to find the finitely many indecomposable representations of a quiver whose underlying
graph is a simply-laced positive definite Coxeter graph.
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