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(a) Show that the following three conditions are equivalent for an R-module M : (i)
every submodule of M is finitely-generated; (ii) the ascending chain condition holds (iii)
the maximal condition on submodules holds.

(b) Show that if M is a module and N is a submodule then:

(i) M is finitely-generated if N and M/N are finitely-generated.

(ii) M is noetherian if and only if N and M/N are noetherian.

(iii) The modules M1,M2, . . . ,Mr are noetherian if and only if their direct sum
M1 ⊕M2 ⊕ · · · ⊕Mr is noetherian.

Let I1, . . . , Ir be ideals of R such that each R/Ij is a noetherian ring. Deduce that⊕
R/Ij is a noetherian R-module, and that, if

⋂
Ij = 0, then R is also a noetherian ring.

(c) Let R[X] be the ring of polynomials in one indeterminate over the ring R. For
any R-module M , let M [X] denote the set of all polynomials in X with coefficients in M ,
that is to say, expressions of the form

m0 + m1X + · · ·+ mrX
r

for mi ∈M . Define the product of an element of R[X] and an element of M [X] such that
M [X] becomes an R[X]-module (you are not asked to prove all the details).

Assume that M is a noetherian R-module. By adapting the proof of the Hilbert
basis theorem, prove that M [X] is a noetherian R[X]-module.
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(a) Let the subset S of R be multiplicatively closed. Explain briefly the construction
which makes S−1R into a ring.

(i) Show that S−1R = {0} if and only if S contains a nilpotent element.

(ii) Let A and B be rings. Let R = A × B. Let S = {(1, 1), (1, 0)}. Prove that
A = S−1R.

(iii) Find all intermediate rings Z ⊆ R ⊆ Q, and describe each R as a localisation
of Z. [Hint: prove first that Z[2/3] = S−1Z where S = {3i : i > 0}.]

(iv) Let R be an integral domain, K its field of fractions, L a finite extension of K
and R̄ the integral closure of R in L. Show that every element of L can be expressed as a
fraction b/a where b ∈ R̄ and a ∈ R.

(b) (i) Let the subset S of R be multiplicatively closed. Show that there is a one-
to-one correspondence between prime ideals of S−1R and prime ideals of R which do not
meet S.

(ii) Let R be a finitely-generated k-algebra. Prove the Nullstellensatz, namely that
N(R) = J(R) (in the usual notation). [You may assume the so-called weak Nullstellensatz
provided you state it clearly.]

3

(a) Briefly describe the construction of the tensor product M⊗RN of two R-modules
M and N . Proofs of assertions are not required.

(i) If I is an ideal of R and M an R-module, show that (R/I)⊗R M is isomorphic
to M/IM . [Hint: You may wish to consider tensoring the exact sequence 0 → I → R →
R/I → 0 with M .]

(ii) Assume additionally that R is a local ring, with unique maximal ideal m, say.
Let M and N be finitely-generated R-modules. Prove that if M ⊗R N = 0, then M = 0
or N = 0. [Hint: if k is the residue field observe that Mk := k⊗R M ∼= M/mM by (i) and
then apply Nakayama’s lemma when Mk = 0.]

(b) What does it mean to say that an R-module is flat?

Show that free R-modules are flat. [You may assume the result that if Mj (j ∈ J)
is a family of R-modules and M is their direct sum, then M is flat if and only if each Mj

is flat.]

Deduce that if R[X] is the ring of polynomials in one indeterminate over R then
R[X] is a flat R-algebra. [Recall that an R-algebra A is a ring A together with a ring
homomorphism R→ A; we say that A is flat if it is flat when considered as an R-module
by restriction of scalars.]
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Let B be a ring and A a subring of B.

(a) What does it mean to say that an element x of B is integral over A?

(i) Show that the set C of elements of B which are integral over A is a subring of
B containing A.

Define the integral closure of A in B. What does it mean to say that (1) A is
integrally closed in B and (2) B is integral over A.

(ii) Let G be a finite group of automorphisms of a ring A and let AG denote the
subring of G-invariants, that is, AG = {x ∈ A : σ(x) = x for all σ ∈ G}. Prove that A is
integral over AG.

(b) Assume that B is integral over A.

(i) State and prove the going-up theorem (the lying-over theorem may be assumed,
if stated clearly).

(ii) Show that if x ∈ A is a unit in B then it is a unit in A. Show also that
the (Jacobson) radical of A is the contraction of the Jacobson radical of B, that is,
J(A) = J(B) ∩A.

(iii) Let p be a prime of A. Suppose that B has a unique prime p′ lying over p.
Quoting carefully any results you use, establish the following three statements (in the
usual notation for localisations). Namely, show (1) that p′Bp is the only maximal ideal of
Bp (2) that Bp′ = Bp, and (3) that Bp′ is integral over Ap.
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(a) Let A =
⊕

n>0An be a noetherian graded ring.

(i) Show that A0 (the zeroth graded piece) is a noetherian ring, and A is finitely-
generated as an A0-algebra.

(ii) Suppose A is generated by elements x1, . . . , xs, which we may take to be
homogeneous, of degrees k1, . . . , ks (all strictly positive). Suppose M is a finitely-generated
graded A-module. Define the Poincaré series P (M, t) of M (with respect to some additive
function λ with values in Z). State and prove the Hilbert–Serre theorem about P .

(iii) Denote the order of the pole of P (M, t) at t = 1 by d. Deduce that if each ki = 1,
then for all sufficiently large n, λ(Mn) is a polynomial in n (with rational coefficients) of
degree d− 1. You may assume the degree of the zero polynomial is -1.

(b) (i) Let R be a ring. Define the Krull dimension, dimR, of R. Suppose now
that A is an affine k-algebra (k a field) which is an integral domain with field of fractions
L. Define the transcendence degree tr.degkL. Assuming Noether’s normalisation lemma,
show that dimA and the transcendence degree are equal.

(ii) Let R be an integral domain of (finite) dimension r, and p a non-zero prime.
Prove that dim(R/p) < r.

(iii) Let A be a subring of B such that B is integral over A. Show that dimA =
dimB. [Hint: you may assume the going-up theorem and the incomparability theorem.]
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(a) Define the height of a prime ideal of R. If R is noetherian, state Krull’s Principal
Ideal Theorem (the Hauptidealsatz) for R. Deduce that if I is a proper ideal generated by
n elements and p is a minimal prime ideal over I, then the height of p is at most n.

(i) Let R be a noetherian local ring with principal prime ideal p of height at least
1. Prove that R is an integral domain.

(ii) Let k be a field, and consider P = k[[X]], the formal power series ring in one
variable, so that every non-zero ideal has the form (Xn) for some n and m = (X) is the
unique maximal ideal. Let R = P ×P . Prove that R is noetherian and has a finite number
of maximal ideals. [You may assume that the primes of R are of the form q× P or P × q
where q is a prime of P . ] Show also that R contains a principal prime p of height 1, but
that R is not an integral domain.

(b) Let R be a noetherian ring and M a finitely-generated R-module.

For an ideal I of R, what is a stable I-filtration (Mn) of M? Define the Rees ring,
R∗. If (Mn) is an I-filtration of M , let M∗ =

⊕
n>0Mn. Explain why M∗ is a graded

R∗-module.

(i) Assuming general facts about graded rings and modules that you need, show
that the following are equivalent:

(1) M∗ is a finitely-generated R∗-module.

(2) The filtration (Mn) is stable.

If M ′ is a submodule of M , deduce the Artin-Rees lemma in the form that there
exists an integer ` such that

(InM) ∩M ′ = In−`((I`M) ∩M ′)

for all n > `.

(ii) Using the Artin–Rees lemma, derive Krull’s intersection theorem in the form
that if I is an ideal and N =

⋂
n>0 I

nM , then there exists x ∈ I such that (1 + x)N = 0.
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