MATHEMATICAL TRIPOS Part III

Wednesday, 9 June, 2021 $\,$ 12:00 pm to 3:00 pm

PAPER 101

COMMUTATIVE ALGEBRA

Before you begin please read these instructions carefully

Candidates have THREE HOURS to complete the written examination.

Attempt no more than **FOUR** questions. There are **SIX** questions in total. The questions carry equal weight. All rings are assumed to be commutative with a 1.

STATIONERY REQUIREMENTS

Cover sheet Treasury tag Script paper Rough paper **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. 1

(a) Show that the following three conditions are equivalent for an R-module M: (i) every submodule of M is finitely-generated; (ii) the ascending chain condition holds (iii) the maximal condition on submodules holds.

(b) Show that if M is a module and N is a submodule then:

(i) M is finitely-generated if N and M/N are finitely-generated.

(ii) M is noetherian if and only if N and M/N are noetherian.

(iii) The modules M_1, M_2, \ldots, M_r are noetherian if and only if their direct sum $M_1 \oplus M_2 \oplus \cdots \oplus M_r$ is noetherian.

Let I_1, \ldots, I_r be ideals of R such that each R/I_j is a noetherian ring. Deduce that $\bigoplus R/I_j$ is a noetherian R-module, and that, if $\bigcap I_j = 0$, then R is also a noetherian ring.

(c) Let R[X] be the ring of polynomials in one indeterminate over the ring R. For any R-module M, let M[X] denote the set of all polynomials in X with coefficients in M, that is to say, expressions of the form

$$m_0 + m_1 X + \dots + m_r X^r$$

for $m_i \in M$. Define the product of an element of R[X] and an element of M[X] such that M[X] becomes an R[X]-module (you are not asked to prove all the details).

Assume that M is a noetherian R-module. By adapting the proof of the Hilbert basis theorem, prove that M[X] is a noetherian R[X]-module.

 $\mathbf{2}$

(a) Let the subset S of R be multiplicatively closed. Explain briefly the construction which makes $S^{-1}R$ into a ring.

(i) Show that $S^{-1}R = \{0\}$ if and only if S contains a nilpotent element.

(ii) Let A and B be rings. Let $R = A \times B$. Let $S = \{(1,1), (1,0)\}$. Prove that $A = S^{-1}R$.

(iii) Find all intermediate rings $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$, and describe each R as a localisation of \mathbb{Z} . [Hint: prove first that $\mathbb{Z}[2/3] = S^{-1}\mathbb{Z}$ where $S = \{3^i : i \ge 0\}$.]

(iv) Let R be an integral domain, K its field of fractions, L a finite extension of K and \overline{R} the integral closure of R in L. Show that every element of L can be expressed as a fraction b/a where $b \in \overline{R}$ and $a \in R$.

(b) (i) Let the subset S of R be multiplicatively closed. Show that there is a one-to-one correspondence between prime ideals of $S^{-1}R$ and prime ideals of R which do not meet S.

(ii) Let R be a finitely-generated k-algebra. Prove the Nullstellensatz, namely that N(R) = J(R) (in the usual notation). [You may assume the so-called weak Nullstellensatz provided you state it clearly.]

3

(a) Briefly describe the construction of the *tensor product* $M \otimes_R N$ of two *R*-modules M and N. Proofs of assertions are not required.

(i) If I is an ideal of R and M an R-module, show that $(R/I) \otimes_R M$ is isomorphic to M/IM. [Hint: You may wish to consider tensoring the exact sequence $0 \to I \to R \to R/I \to 0$ with M.]

(ii) Assume additionally that R is a local ring, with unique maximal ideal \mathfrak{m} , say. Let M and N be finitely-generated R-modules. Prove that if $M \otimes_R N = 0$, then M = 0or N = 0. [Hint: if k is the residue field observe that $M_k := k \otimes_R M \cong M/\mathfrak{m}M$ by (i) and then apply Nakayama's lemma when $M_k = 0$.]

(b) What does it mean to say that an *R*-module is *flat*?

Show that free *R*-modules are flat. [You may assume the result that if M_j $(j \in J)$ is a family of *R*-modules and *M* is their direct sum, then *M* is flat if and only if each M_j is flat.]

Deduce that if R[X] is the ring of polynomials in one indeterminate over R then R[X] is a flat R-algebra. [Recall that an R-algebra A is a ring A together with a ring homomorphism $R \to A$; we say that A is *flat* if it is flat when considered as an R-module by restriction of scalars.]

 $\mathbf{4}$

4

Let B be a ring and A a subring of B.

(a) What does it mean to say that an element x of B is *integral* over A?

(i) Show that the set C of elements of B which are integral over A is a subring of B containing A.

Define the *integral closure* of A in B. What does it mean to say that (1) A is *integrally closed* in B and (2) B is *integral* over A.

(ii) Let G be a finite group of automorphisms of a ring A and let A^G denote the subring of G-invariants, that is, $A^G = \{x \in A : \sigma(x) = x \text{ for all } \sigma \in G\}$. Prove that A is integral over A^G .

(b) Assume that B is integral over A.

(i) State and prove the going-up theorem (the lying-over theorem may be assumed, if stated clearly).

(ii) Show that if $x \in A$ is a unit in B then it is a unit in A. Show also that the (Jacobson) radical of A is the contraction of the Jacobson radical of B, that is, $J(A) = J(B) \cap A$.

(iii) Let \mathfrak{p} be a prime of A. Suppose that B has a unique prime \mathfrak{p}' lying over \mathfrak{p} . Quoting carefully any results you use, establish the following three statements (in the usual notation for localisations). Namely, show (1) that $\mathfrak{p}'B_{\mathfrak{p}}$ is the only maximal ideal of $B_{\mathfrak{p}}$ (2) that $B_{\mathfrak{p}'} = B_{\mathfrak{p}}$, and (3) that $B_{\mathfrak{p}'}$ is integral over $A_{\mathfrak{p}}$. $\mathbf{5}$

(a) Let $A = \bigoplus_{n \ge 0} A_n$ be a noetherian graded ring.

(i) Show that A_0 (the zeroth graded piece) is a noetherian ring, and A is finitelygenerated as an A_0 -algebra.

(ii) Suppose A is generated by elements x_1, \ldots, x_s , which we may take to be homogeneous, of degrees k_1, \ldots, k_s (all strictly positive). Suppose M is a finitely-generated graded A-module. Define the *Poincaré series* P(M, t) of M (with respect to some additive function λ with values in Z). State and prove the Hilbert–Serre theorem about P.

(iii) Denote the order of the pole of P(M, t) at t = 1 by d. Deduce that if each $k_i = 1$, then for all sufficiently large n, $\lambda(M_n)$ is a polynomial in n (with rational coefficients) of degree d - 1. You may assume the degree of the zero polynomial is -1.

(b) (i) Let R be a ring. Define the Krull dimension, dim R, of R. Suppose now that A is an affine k-algebra (k a field) which is an integral domain with field of fractions L. Define the transcendence degree tr.deg_kL. Assuming Noether's normalisation lemma, show that dim A and the transcendence degree are equal.

(ii) Let R be an integral domain of (finite) dimension r, and \mathfrak{p} a non-zero prime. Prove that $\dim(R/\mathfrak{p}) < r$.

(iii) Let A be a subring of B such that B is integral over A. Show that $\dim A = \dim B$. [Hint: you may assume the going-up theorem and the incomparability theorem.]

6

(a) Define the *height* of a prime ideal of R. If R is noetherian, state Krull's Principal Ideal Theorem (the *Hauptidealsatz*) for R. Deduce that if I is a proper ideal generated by n elements and \mathfrak{p} is a minimal prime ideal over I, then the height of \mathfrak{p} is at most n.

(i) Let R be a noetherian local ring with principal prime ideal \mathfrak{p} of height at least 1. Prove that R is an integral domain.

(ii) Let k be a field, and consider P = k[[X]], the formal power series ring in one variable, so that every non-zero ideal has the form (X^n) for some n and $\mathfrak{m} = (X)$ is the unique maximal ideal. Let $R = P \times P$. Prove that R is noetherian and has a finite number of maximal ideals. [You may assume that the primes of R are of the form $\mathfrak{q} \times P$ or $P \times \mathfrak{q}$ where \mathfrak{q} is a prime of P.] Show also that R contains a principal prime \mathfrak{p} of height 1, but that R is not an integral domain.

(b) Let R be a noetherian ring and M a finitely-generated R-module.

For an ideal I of R, what is a stable I-filtration (M_n) of M? Define the Rees ring, R^* . If (M_n) is an I-filtration of M, let $M^* = \bigoplus_{n \ge 0} M_n$. Explain why M^* is a graded R^* -module.

(i) Assuming general facts about graded rings and modules that you need, show that the following are equivalent:

(1) M^* is a finitely-generated R^* -module.

(2) The filtration (M_n) is stable.

If M' is a submodule of M, deduce the Artin-Rees lemma in the form that there exists an integer ℓ such that

$$(I^n M) \cap M' = I^{n-\ell}((I^\ell M) \cap M')$$

for all $n \ge \ell$.

(ii) Using the Artin–Rees lemma, derive Krull's intersection theorem in the form that if I is an ideal and $N = \bigcap_{n \ge 0} I^n M$, then there exists $x \in I$ such that (1+x)N = 0.

END OF PAPER