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1 (a) Consider the linear measurement model

m = Au+ η,

where u ∈ R
d and η ∈ R

k are assumed to be independent random variables, with
probability measures that are absolutely continuous with respect to Lebesgue measure,
and A ∈ R

k×d is a known matrix. Formulate the posterior probability density function
that gives a solution to the inverse problem “given a measurement m approximate u”.

(b) Assume that the measurement is given by m = 〈A, u〉+ η where u ∈ R
2, η ∈ R

and A = (2, 1) ∈ R
2. Assume that η ∼ N (0, δ2), with noise level δ > 0, and u ∼ N (0, I2).

Derive the posterior distribution and calculate the posterior mean and covariance. Does
the prior play any role in the small noise limit δ → 0? Is the uncertainty in the solution
same to all directions? Explain.

(c) Let µ and µ′ denote two probability measures that are absolutely continuous
with respect to a third probability measure ν. The Hellinger distance between between µ
and µ′ is defined as

dHell(µ, µ
′) =

√

1

2

∫
(

√

dµ

dν
−

√

dµ′

dν

)2

dν.

Let µ1 = N (θ1, σ
2
1) and µ2 = N (θ2, σ

2
2) be two Gaussian measures on R. The squared

Hellinger distance between µ1 and µ2 is

dHell(µ1, µ2)
2 = 1−

√
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σ2
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2
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2
)
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.

Prove the above in the special case σ1 = σ2 = 1. Show that

dHell(µ1, µ2)
2
6 Cσ1,σ2

(

(σ1 − σ2)
2 + (θ1 − θ2)

2
)

,

where Cσ1,σ2
> 0 is a constant depending on σ1 and σ2. [Hint: e

−x > (1−x).]
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2 Assume the linear measurement model

m = Au+ η,

where u ∈ R
d and η ∈ R

k are independent random variables, with probability measures
that are absolutely continuous with respect to Lebesgue measure, and A ∈ R

k×d is a
known matrix.

(a) Assume that the posterior density πm(u) = π(u |m) exists. Define the
conditional mean (CM) estimator and maximum a posterior (MAP) estimator. Let
u ∼ N (0,Σ), where Σ is a positive definite matrix, and η ∼ N (0, I). State the CM
estimator for u given a measurement m. [Either of the forms given in the lecture notes is
accepted].

(b) Let u ∈ R
d represent a pixel image, where the jth component uj represents the

intensity of the jth pixel. Assume that the prior knowledge is that the picture contains
small and well localised objects with the background having intensity close to zero. Give
an example of an appropriate prior density. Assume that random draws from a uniform
distribution U([0, 1]) are available. Show how to draw samples from the distribution you
chose and justify your method.

(c) Assume that the null space of A is zero, and u ∼ U , where U is an uninformative
and improper prior with constant density on R

d, that is, π(u) = c > 0. Furthermore,
assume that η | δ ∼ N (0, δ2I), where δ > 0 is unknown. The noise amplitude is modelled
by assuming 1/δ2 = γ ∼ Γ(α, β), where α, β > 0, and Γ(α, β) is the Gamma distribution,
with the density

πh(γ) ∝ γα−1 exp(−βγ).

Write down the posterior distribution πm(u, γ) and the densities of u | γ,m and γ |u,m.
Give the MAP estimators for u and γ.
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3 (a) Define the Cameron–Martin space and Cameron–Martin theorem both for a
Gaussian measure µ = N (0,Σ), where Σ is a self-adjoint, positive definite trace-class
operator on a Hilbert space (H, 〈·, ·〉).

(b) Assume measurement model m = Au+η, where A = K∗K, with K : Ht(R2) →
Ht+2(R2) for any t ∈ R, and K∗ is such that 〈K∗u, v〉L2 = 〈u,Kv〉L2 . The unknown
u is assumed to follow a Gaussian prior Π, for which Π(L2(R2)) = 1. Assume white
Gaussian noise model, that is, η ∼ P0 = N (0, I). Define the posterior Πm using Bayes’
theorem. Show that it is well defined and justify why we can use Bayes’ theorem. [You
may use the properties of white noise and the fact that the potential is ν0-measurable for
ν0(du, dm) = Π(du)P0(dm) without proof.]

(c) Let µ and µ′ be two probability measures on a separable Banach space X. Let
(Y, ‖ · ‖) be a separable Banach space and assume that f : X → Y is measurable and has
second moments with respect to both µ and µ′. Show that

‖Eµ(f)− E
µ′

(f)‖ 6 2
(

E
µ‖f‖2 + E

µ′

‖f‖2
)

1

2

dHell(µ, µ
′),

where the Hellinger distance dHell is defined as in question 1 part (c).
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