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1 (a) Consider the case where a supermassive black hole of mass MBH is accreting
dust particles each with a radius rd and a density ρd = 1g cm−3. Calculate the critical
dust particle radius rd,crit such that the black hole is able to shine at a luminosity which
equals the Eddington luminosity in the electron scattering regime.

If in reality dust particles have a range of radii encompassing rd,crit explain what
will happen to the dust if the black hole is always shining at the same luminosity. You
may ignore here any wavelength dependence of dust opacity.

(b) Consider now a dusty gas shell with mass Msh initially at a distance R0 from
a supermassive black hole whose mass is MBH and UV luminosity is L. You may neglect
any other source of gravity. Derive an expression for the Eddington limit of this system
and show that there exist three characteristic Eddington ratios Γ = L

LEdd
which depend

on the nature of the dust opacity, where LEdd is the Eddington luminosity.

If the shell is expanding away from the black hole in a medium of negligible
density solve for the velocity of the shell at infinity v∞ assuming that v(R0) = v0,
R0 < RUV < R∞, where RUV is the transparency radius in UV, to obtain

v2∞ = v20 +
2GMBH

R0

[

Γss
RUV

R0

+ ΓIR − 1

](

1−
R0

RUV

)

+
2GMBH

RUV

(

ΓUV − 1

)

,

where ΓIR, Γss and ΓUV are the Eddington ratios in IR optically thick, UV optically thick
(single scattering) and UV optically thin limits, respectively.

If RUV ≫ R0 and ΓIR ≪ Γss
RUV

R0
show that a large optical depth in UV leads to v∞

in excess of escape velocity evaluated at R0 for L ∼ LEdd. What is the physical meaning
of this result?
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2 (a) Consider the case of a steady, spherically symmetric gas accretion onto a
supermassive black hole of mass MBH where the gas is at rest at infinity. Assume that
the gas has a polytropic equation of state p = Kρ1+1/n and that the Bernoulli’s constant
is H = u2/2 + (n+ 1)Kρ1/n −GMBH/r, where p is the gas pressure, ρ is the gas density,
K is a constant, n is the polytropic index, u is the gas velocity, G is the gravitational
constant and r is the distance from the black hole. Derive an expression for the black hole
accretion rate expressed as a function of gas density and sound speed at infinity.

If the gas equation of state is adiabatic with an adiabatic index γ = 5/3 show where
the sonic transition occurs. Is it possible for this gas to accrete onto a black hole and why?
What would be the correct expression for the accretion rate in this case?

(b) A singular isothermal halo with a velocity dispersion σ contains fgas fraction of
its mass in gas and a supermassive black hole with a mass MBH approximatively on the
observed scaling relation, i.e.

MBH ∼ 3× 108 M⊙

(

σ

200km s−1

)4

.

In the very optimistic case of all gas within some radius R being able to accrete onto the
black hole on a dynamical time scale show that the estimated accretion rate is less than
100 times the Eddington rate for σ ∼ 200km s−1.

Explain why this is a very optimistic accretion rate and what in general we can
deduce about the actual black hole fuelling efficiency.

Suddenly this gas is heated to a high temperature due to a burst of AGN feedback
such that the gas sound speed cs,feed ∼ 10σ. Estimate the likely change in the black hole
accretion rate and comment on your result.

(c) A supermassive black hole with mass MBH is subject to dynamical friction as it
moves supersonically through a “sea” of star particles with an average velocity dispersion
σ∗. Assume the black hole’s velocity is v ≫ σ∗, all stars have the same mass m ≪ MBH

and the hole is non-rotating. Consider a single star with an impact parameter b and the
minimum approach radius rmin to roughly derive that the star will be accreted by the
black hole if

b <
2GMBH

cv
.

[Hint: Use the conservation of energy and angular momentum.]

Show that the accretion rate onto the black hole will be suppressed by a factor
of (v/c)2 compared to the gas accretion in Bondi-Hoyle-Lyttleton regime if the gas and
stellar densities are comparable. What does this imply for the growth of supermassive
black holes by stellar or dark matter capture?
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3 (a) A Shakura-Sunyaev disc is steadily accreting at a rate ṁ onto a supermassive
black hole with mass MBH where ṁ is comparable to the Eddington rate. Qualitatively
describe which spatial regions exist in the disc governed by different sources of opacity
and pressure.

Viscous dissipation per unit disc face area is given by

1

2
νΣR2

(

dΩ

dR

)2

≃
3GMBHṁ

8πR3

[

1−

(

R∗

R

)1/2]

,

where R is the radial distance in cylindrical-polar coordinates, ν is the kinematic viscosity,
Σ is the gas surface density, Ω is the gas angular velocity, and R∗ corresponds to the
innermost stable circular orbit. Derive an expression for the disc height valid in the
innermost regions and roughly sketch the disc height as a function of R.

(b) Recalling that the thermal instability criterion can be expressed as

dQ̇

dTc

< 0 ,

where Q̇ is the net cooling rate and Tc is the midplane temperature, derive whether
the Shakura-Sunyaev disc is thermally unstable in these three scenarios: (i) the gas
temperature is larger than 104 K and the gas is optically thin, (ii) the gas is optically
thick and the main source of opacity is the Kramers’ opacity, and (iii) the gas is optically
thick and the main source of opacity is electron scattering. In all cases assume gas pressure
dominates the total pressure.

(c) Assume now that MBH = 108 M⊙ and that ṁ = 0.1M⊙ yr−1. If the spin of the
black hole is initially negligible roughly estimate the rate at which the angular momentum
of the black hole increases due to gas accretion provided that the gas is always co-rotating.
How long does it take to spin the black hole up to the maximally rotating Kerr black hole?
By how much does the black hole mass increase in this time? What do you deduce from
this calculation about the likelihood of low spinning black holes if they acquire most of
their mass through a Shakura-Sunyaev disc? Describe if there is any (current or future)
observational measurement that can constrain the average spin value of the entire black
hole population?
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