# MAT3, MAMA, NST3AS, MAAS MATHEMATICAL TRIPOS P

Part III

Monday, 3 June, 2019 9:00 am to 11:00 am

#### **PAPER 346**

#### GALAXY FORMATION

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper Rough paper

# SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

### CAMBRIDGE

1 (a) Derive the expression for the comoving Jeans length of a collisional fluid with homogeneous density  $\overline{\rho}$  and sound speed  $c_{\rm s}$  in the form

$$\lambda_{\rm J}^{\rm com} = \frac{c_{\rm s}}{a(t)} \sqrt{\frac{\pi}{G\,\overline{\rho}}}$$

where a(t) is the scalefactor.

What is the fate of perturbations with wavelength  $\lambda < \lambda_{\rm I}^{\rm com}$ ?

If the fluid is collisionless, how does the formula for the comoving Jeans length change?

Suppose the Universe contains baryons and photons only. On a graph of comoving scale versus time, show the evolution of the comoving Jeans length for adiabatic, isentropic perturbations of baryons in an Einstein-de Sitter Universe. The plot should distinguish the behaviour of  $\lambda_{\rm J}^{\rm com}$  for the baryons from before the epoch of matter-radiation equality  $t_{\rm eq}$  to after the epoch of recombination  $t_{\rm rec}$ .

Now suppose the Universe contains cold dark matter particles which can be treated as a collisionless fluid. On a new plot, show the behaviour of the comoving Jeans length for cold dark matter particles. This should distinguish the behaviour of  $\lambda_{\rm J}^{\rm com}$  in the epochs when the cold dark matter particles are relativistic  $t < t_{\rm NR}$ , are non-relativistic but still coupled to photons  $t_{\rm NR} < t < t_{\rm dec}$  and are fully decoupled  $t > t_{\rm dec}$ . The behaviour of  $\lambda_{\rm J}^{\rm com}$  should also be traced through the epochs of matter-radiation equality  $t_{\rm eq}$  to after the epoch of recombination  $t_{\rm rec}$ .

(b) In a flat Universe with non-zero cosmological constant  $\Lambda$ , the equation of motion of the radius of a shell enclosing mass M in a spherically symmetric perturbation is

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} = -\frac{GM}{r^2} + \frac{\Lambda}{3}r.$$

Show that the evolution conserves energy E

$$E = \frac{1}{2} \left(\frac{\mathrm{d}r}{\mathrm{d}t}\right)^2 - \frac{GM}{r} - \frac{\Lambda}{6}r^2.$$

Assuming a uniform sphere with mass M and turnaround radius  $r_{ta}$ , show that the potential energies at turnaround due to gravity and  $\Lambda$  are

$$W_{\rm G,ta} = -\frac{3}{5} \frac{GM^2}{r_{\rm ta}}, \qquad \qquad W_{\Lambda,\rm ta} = -\frac{1}{10} \Lambda M r_{\rm ta}^2.$$

Show that, in the final virialized state, the kinetic and potential energies are related by

$$2T_{\rm f} + W_{\rm G,f} = 2W_{\Lambda,f},$$

where  $T_{\rm f}$  is the final kinetic energy.

Hence, show that the final radius  $r_{\rm f}$  satisfies the cubic equation

$$2\eta (r_{\rm f}/r_{\rm ta})^3 - (2+\eta)(r_{\rm f}/r_{\rm ta}) + 1 = 0,$$

with  $\eta = \Lambda/(4\pi G\rho_{\rm ta})$  where  $\rho_{\rm ta}$  is the mean density at turnaround.

#### [QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 346

## UNIVERSITY OF

3

By making a suitable approximation, show further that

$$\frac{r_{\rm f}}{r_{\rm ta}} = \frac{1 - \eta/2}{2 - \eta/2}.$$

Provide a physical interpretation of this result, in particular comparing the repulsive or positive  $\Lambda$  case with the zero  $\Lambda$  case.

### UNIVERSITY OF

2 Suppose that any encounter of a galaxy with another galaxy leads to a merger if the impact parameter is less than R. Ignoring gravitational focussing, explain why the probability of a merger in time T is

$$P = \pi R^2 \langle v_{\rm rel} \rangle NT,$$

where N is the number density of galaxies and  $\langle v_{\rm rel} \rangle$  is the mean relative velocity.

By estimating R, N and  $\langle v_{\rm rel} \rangle$  and recalling that 1 kpc  $\approx 3 \times 10^{16}$  km, compute an order of magnitude estimate for the probability of a merger in a Hubble time.

Consider a perturbing mass  $m_p$  which passes a galaxy at impact parameter  $\underline{p} = p\underline{\hat{x}}$  with a large velocity  $\underline{v} = v\underline{\hat{z}}$ . Here,  $\underline{\hat{x}}$  and  $\underline{\hat{z}}$  are unit vector in the x-direction and the z-direction respectively. Suppose the centre of the galaxy is at the origin and the perturbing mass is in the (x, y) plane with position vector  $\underline{r}_p$ . For  $r = |\underline{r}| < p$ , show that the perturbing or tidal potential is

$$\psi(r) = \frac{Gm_{\rm p}}{r_{\rm p}^{-3}} \left[ -\frac{r^2}{2} + \frac{3(\underline{r} \cdot \underline{r}_{\rm p})^2}{2r_{\rm p}^{-2}} \right].$$

Here, we are using the convention that the tidal force  $= \nabla \psi$ , whilst  $r_{\rm p} = |\underline{r}_{\rm p}|$  is the distance of the perturber.

Hence, in the impulse approximation, show that a star at  $\underline{r}$  receives a velocity increment

$$\Delta \underline{v} = \frac{2Gm_{\rm p}}{vp^2} \left( x, -y, 0 \right).$$

Assuming  $\Delta \underline{v}$  is uncorrelated with  $\underline{v}$ , show that the change in energy per unit mass is

$$\Delta E = \frac{2G^2 m_{\rm p}^2}{v^2 p^4} (x^2 + y^2).$$

On averaging over a spherical galaxy of mass  $m_{\rm g}$ , deduce that

$$\Delta E = \frac{4G^2 m_{\rm p}^2 m_{\rm g}}{3v^2 p^4} \langle r^2 \rangle.$$

where  $\langle r^2 \rangle$  is the mean square radius of stars in the galaxy.

Hence, deduce that in an encounter of two equal mass galaxies, the energy change is  $2C^2 = 3$ 

$$\Delta E = \frac{8G^2 m_{\rm g}^3}{3v^2 p^4} \langle r^2 \rangle.$$

Explain why the orbital energy is

$$E = \frac{1}{4}m_{\rm g}v^2.$$

Show that the condition for a merger is

$$pv < \left[\frac{32}{3}G^2 m_{\rm g}^2 \langle r^2 \rangle\right]^{1/4}.$$

#### [QUESTION CONTINUES ON THE NEXT PAGE]

Part III, Paper 346

# CAMBRIDGE

5

Explain why this formula fails when  $v/p < \Omega$ , where  $\Omega$  is the circling frequency of stars in the galaxy.

### UNIVERSITY OF

**3** In the Zel'dovich approximation, how is the initial comoving position of a mass element  $\underline{x}_i$  at time  $t_i$  related to its present position  $\underline{x}(t)$ ?

Stating clearly any assumptions, derive the Zel'dovich approximation in the form

$$\underline{\dot{x}} = -\frac{\dot{D}(t)}{4\pi G \,\overline{\rho}_{\rm m} a^3} \nabla \Phi_{\rm i},$$

where a is the scale factor (normalised to unity at the initial time  $t_i$ ),  $\overline{\rho}_m(t)$  is the mean matter density, D(t) is the linear growth rate and  $\Phi_i$  is the potential perturbation at  $t_i$ . (Note that, throughout this question, the roman subscript 'i' designates 'initial' and is not a tensorial index).

What is the physical origin of the spin of a dark halo?

Let the Lagrangian region occupied by a virialized dark halo be  $V_{\rm L}$ . The angular momentum of the material at early times is

$$\underline{J} = \int_{V_{\rm L}} \mathrm{d}^3 x_{\rm i} \,\overline{\rho}_{\rm m} a^3 (a \underline{x} - a \underline{\hat{x}}) \times \underline{v},$$

where  $\underline{\hat{x}}$  is the barycentre of the volume and  $\underline{v}$  is the peculiar velocity. Show that, to lowest order,

$$\underline{J} = -\frac{\dot{D}}{4\pi G \,\overline{\rho}_{\rm m} a^2} \int_{\Sigma_{\rm L}} \Phi_{\rm i}(\underline{x}_{\rm i}) \left(\underline{x}_{\rm i} - \underline{\hat{x}}_{\rm i}\right) \times \mathrm{d}\underline{S},$$

where  $\Sigma_{\rm L}$  is the surface bounding the volume  $V_{\rm L}$ .

Show that the angular momentum vanishes if the volume  $V_{\rm L}$  is spherical.

Evaluate the angular momentum if the bounding surface  $\Sigma_{\rm L}$  is an equipotential.

By expanding  $\Phi_i$  in a Taylor series, show

$$J_j = -\frac{\dot{D}}{4\pi G \,\overline{\rho}_{\rm m} a} \,\epsilon_{jkl} T_{km} I_{ml},\tag{1}$$

where  $\epsilon_{jkl}$  is the completely antisymmetric tensor,  $I_{jk}$  is the moment of inertia tensor

$$I_{jk} = \int_{V_{\mathrm{L}}} \mathrm{d}^3 x_{\mathrm{i}} \,\overline{\rho}_{\mathrm{m}} a^3 (x_{\mathrm{i},j} - \hat{x}_{\mathrm{i},j}) (x_{\mathrm{i},k} - \hat{x}_{\mathrm{i},k}),$$

and  $T_{jk}$  is a suitably defined tensor.

Compute how the angular momentum of a halo scales with time in an Einstein-de Sitter Universe.

When compared against numerical cosmological simulations of the build-up of structure, the angular momentum growth of halos is only roughly consistent with eq (1). State two reasons for this failure.



7

#### END OF PAPER

Part III, Paper 346