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1 (a) Derive the expression for the comoving Jeans length of a collisional fluid with
homogeneous density ρ and sound speed cs in the form

λcomJ =
cs
a(t)

√

π

Gρ
,

where a(t) is the scalefactor.

What is the fate of perturbations with wavelength λ < λcomJ ?

If the fluid is collisionless, how does the formula for the comoving Jeans length
change?

Suppose the Universe contains baryons and photons only. On a graph of comoving
scale versus time, show the evolution of the comoving Jeans length for adiabatic, isentropic
perturbations of baryons in an Einstein-de Sitter Universe. The plot should distinguish
the behaviour of λcomJ for the baryons from before the epoch of matter-radiation equality
teq to after the epoch of recombination trec.

Now suppose the Universe contains cold dark matter particles which can be treated
as a collisionless fluid. On a new plot, show the behaviour of the comoving Jeans length
for cold dark matter particles. This should distinguish the behaviour of λcomJ in the epochs
when the cold dark matter particles are relativistic t < tNR, are non-relativistic but still
coupled to photons tNR < t < tdec and are fully decoupled t > tdec. The behaviour of
λcomJ should also be traced through the epochs of matter-radiation equality teq to after the
epoch of recombination trec.

(b) In a flat Universe with non-zero cosmological constant Λ, the equation of motion
of the radius of a shell enclosing mass M in a spherically symmetric perturbation is

d2r

dt2
= −

GM

r2
+

Λ

3
r.

Show that the evolution conserves energy E

E =
1

2

(dr

dt

)2

−
GM

r
−

Λ

6
r2.

Assuming a uniform sphere with mass M and turnaround radius rta, show that the
potential energies at turnaround due to gravity and Λ are

WG,ta = −
3

5

GM2

rta
, WΛ,ta = −

1

10
ΛMrta

2.

Show that, in the final virialized state, the kinetic and potential energies are related
by

2Tf +WG,f = 2WΛ,f ,

where Tf is the final kinetic energy.

Hence, show that the final radius rf satisfies the cubic equation

2η(rf/rta)
3 − (2 + η)(rf/rta) + 1 = 0,

with η = Λ/(4πGρta) where ρta is the mean density at turnaround.

[QUESTION CONTINUES ON THE NEXT PAGE]
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By making a suitable approximation, show further that

rf
rta

=
1− η/2

2− η/2
.

Provide a physical interpretation of this result, in particular comparing the repulsive
or positive Λ case with the zero Λ case.
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2 Suppose that any encounter of a galaxy with another galaxy leads to a merger if
the impact parameter is less than R. Ignoring gravitational focussing, explain why the
probability of a merger in time T is

P = πR2〈vrel〉NT,

where N is the number density of galaxies and 〈vrel〉 is the mean relative velocity.

By estimating R, N and 〈vrel〉 and recalling that 1 kpc ≈ 3× 1016 km, compute an
order of magnitude estimate for the probability of a merger in a Hubble time.

Consider a perturbing mass mp which passes a galaxy at impact parameter p = px̂
with a large velocity v = vẑ. Here, x̂ and ẑ are unit vector in the x-direction and the z-
direction respectively. Suppose the centre of the galaxy is at the origin and the perturbing
mass is in the (x, y) plane with position vector rp. For r = |r| < p, show that the
perturbing or tidal potential is

ψ(r) =
Gmp

rp3

[

−
r2

2
+

3(r · rp)
2

2rp2

]

.

Here, we are using the convention that the tidal force =∇ψ, whilst rp = |rp| is the distance
of the perturber.

Hence, in the impulse approximation, show that a star at r receives a velocity
increment

∆v =
2Gmp

vp2
(x,−y, 0) .

Assuming ∆v is uncorrelated with v, show that the change in energy per unit mass
is

∆E =
2G2mp

2

v2p4
(x2 + y2).

On averaging over a spherical galaxy of mass mg, deduce that

∆E =
4G2mp

2mg

3v2p4
〈r2〉.

where 〈r2〉 is the mean square radius of stars in the galaxy.

Hence, deduce that in an encounter of two equal mass galaxies, the energy change
is

∆E =
8G2mg

3

3v2p4
〈r2〉.

Explain why the orbital energy is

E =
1

4
mgv

2.

Show that the condition for a merger is

pv <

[

32

3
G2mg

2〈r2〉

]1/4

.

[QUESTION CONTINUES ON THE NEXT PAGE]
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Explain why this formula fails when v/p < Ω, where Ω is the circling frequency of
stars in the galaxy.
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3 In the Zel’dovich approximation, how is the initial comoving position of a mass
element xi at time ti related to its present position x(t) ?

Stating clearly any assumptions, derive the Zel’dovich approximation in the form

ẋ = −
Ḋ(t)

4πGρma
3
∇Φi,

where a is the scale factor (normalised to unity at the initial time ti), ρm(t) is the mean
matter density, D(t) is the linear growth rate and Φi is the potential perturbation at ti.
(Note that, throughout this question, the roman subscript ‘i’ designates ‘initial’ and is not
a tensorial index).

What is the physical origin of the spin of a dark halo?

Let the Lagrangian region occupied by a virialized dark halo be VL. The angular
momentum of the material at early times is

J =

∫

VL

d3xi ρma
3(ax− ax̂)× v,

where x̂ is the barycentre of the volume and v is the peculiar velocity. Show that, to lowest
order,

J = −
Ḋ

4πGρma
2

∫

ΣL

Φi(xi) (xi − x̂i)× dS,

where ΣL is the surface bounding the volume VL.

Show that the angular momentum vanishes if the volume VL is spherical.

Evaluate the angular momentum if the bounding surface ΣL is an equipotential.

By expanding Φi in a Taylor series, show

Jj = −
Ḋ

4πGρma
ǫjklTkmIml, (1)

where ǫjkl is the completely antisymmetric tensor, Ijk is the moment of inertia tensor

Ijk =

∫

VL

d3xi ρma
3(xi,j − x̂i,j)(xi,k − x̂i,k),

and Tjk is a suitably defined tensor.

Compute how the angular momentum of a halo scales with time in an Einstein-de
Sitter Universe.

When compared against numerical cosmological simulations of the build-up of
structure, the angular momentum growth of halos is only roughly consistent with eq (1).
State two reasons for this failure.
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