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Consider an inviscid incompressible two-dimensional flow with mean velocity field
U = (U(z), 0) and non-diffusing Boussinesq background stratification characterised by the
buoyancy frequency N(z) about a reference density ρ0. The coordinates x = (x, z) are
oriented with z vertically upward.

(a) Linearise the equations of motion and hence derive an equation governing the
vertical velocity fluctuations w(x, z, t). Show that in the limit of a stationary
disturbance this reduces to

(

∇2 +
N2

U2
− U ′′

U

)

w = 0,

where U ′′ = d2U/dz2. What restriction(s) must be applied to U and N?

(b) Consider an upward propagating stationary disturbance originating at z = 0 with
wavenumber vector k = (k,m). Outline the conditions required for the WKB
approximation to be applied. Consider the case U/N = (1 + γz)U0/N0 with
|UU ′′| ≪ N2 and γ a constant. Using the WKB approximation, sketch for both
γ < 0 and γ > 0 (i) the direction of energy propagation, (ii) the orientation of
the wavenumber vector, and (iii) the orientation and spacing of lines of constant
phase. In both cases, determine the height where the character of the waves changes
qualitatively. Discuss briefly whether the WKB approximation is uniformly valid.

(c) Consider now the case of the mean velocity and continuous background stratification
given by

U(z) =

{

U2 z > 0,
0 z < 0,

N(z) =

{

N2 z > 0,
N1 z < 0,

for constant U2, N1 and N2. An oscillatory disturbance located at z ≪ 0 produces
waves with amplitude |u0| = A0, frequency ω0 < N1 and wavenumber vector
k0 = (k0,m0). Assuming these waves propagate to the right and reach z = 0,
use matching conditions to show that the amplitude At of the reflected wave is
given by

At

A0

=
2

cos θ2
cos θ1

+
(

1− k0U2

ω0

sin θ2
sin θ1

) .

Give expressions for the angles θ1 and θ2. Suppose N1 = N2 and ω0/N1 =
1

2
. Sketch

the orientation of the lines of constant phase for the case when k0U2 = −1

4
N1. What

happens when k0U2 =
1

2
N1?
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Consider a high Reynolds number flow in an expanding channel with a triangular
cross-section. With z oriented vertically upward, the bottom of the channel is given by
z = 0 at y = 0 for x > 0, and the top of the sloping side walls by z = H at y = ±βx.
The fluid is of density ρ0 throughout the system, but there is an interface at z = h(x, t)
(with h 6 H). The fluid below the interface is laden with particles of density ρp at a
volume concentration φ(x, t). The particle-laden fluid has velocity u(x, t), averaged over
the triangular cross-section. Above the interface the fluid may be considered quiescent
and devoid of particles.

(a) Specify an appropriate model for the settling of the particles near a horizontal
boundary if the settling velocity of an individual particle in isolation is Ws. How
is this affected by weak turbulent stirring? How might you expect the settling to
be modified if the boundary is not horizontal? Give an expression for the reduced
gravity g′ of the particle-laden fluid.

(b) Under what conditions can the flow be considered as ‘shallow water’? Assume that
the flow is Boussinesq with φ ≪ 1 and there is weak stirring such that the volume of
the layer is conserved. Formulate the shallow water equations in terms of h, u and
φ for the flow in this channel. (You may assume the particle concentration φ(x, t)
remains uniform in y and z below the interface and the settling is not affected by the
sloping walls.) Show that the equations are hyperbolic with three characteristics and
determine the corresponding ordinary differential equations for each characteristic.

(c) For t < 0 the particle-laden fluid is confined to the region 0 < x 6 L0 with h = H,
φ = φ0 ≪ 1 and u = 0. At t = 0 the fluid is released to form a gravity current flowing
along the channel in the positive x direction. Specify a suitable front condition and
derive an integral model for the development of the gravity current. Determine the
maximum distance along the channel the current can propagate.
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Consider a vertical axisymmetric time-dependent turbulent buoyant plume of radius
b(z, t), density ρ(z, t) and vertical velocity w(z, t) in a quiescent homogeneous fluid of
constant density ρ0.

(a) Give an expression for ‘Batchelor entrainment’ into the plume under the assumption
of a non-Boussinesq density difference. Define the buoyancy flux F (z, t), mass flux
Q(z, t) and momentum flux M(z, t) for ‘top-hat’ profiles and derive the ‘plume
equations’ in terms of these quantities.

(b) Solve the plume equations for the case of a steady Boussinesq plume from a point
source at z = 0 providing a buoyancy flux F0 > 0 but zero mass and momentum
fluxes. Determine corresponding expressions for b, ρ, w and the reduced gravity
g′(z). Show that the Froude number Cp = w/

√
g′b is constant and determine its

value. Discuss briefly the validity of the Boussinesq assumption in this case.

(c) Consider now a ‘starting plume’ from a point source at z = 0 where the buoyancy
flux at the source is given by

F (0, t) =

{

0 t < 0,
F0 t > 0,

and Q(0, t), M(0, t) are zero. For t > 0 the starting plume can be modelled as the
combination of a steady plume of width b(z) for z < Z(t) and a spherical ‘thermal’
with reduced gravity gt(t) and radius R(t) that is centred on z = Z(t) and rising
with velocity U(t) (see figure). For this model the only entrainment into the thermal
is due to the flux at z = Z(t) from the steady part of the plume. The radius of the
thermal must be at least as large as B(t) = b(Z), the radius of the plume at this
height (i.e. R > B).

(i) If the starting plume is self-similar, what functional forms
must R, U and gt take?

(ii) Derive equations for conservation of volume and mass for
the thermal and hence show that the reduced gravity in
the thermal is given by

gt =
9

4
gp,

where gp = g′(Z) is the reduced gravity at the top of the
steady part of the plume.

(iii) Show that the Froude number of the thermal Ct =
U/

√

gpR is constant and derive an expression for Ct/Cp

as a function of R/B. By considering the limits on R,
show that Ct/Cp < 10/(15 + 72α).

R(t)

Z(t)

B(t)
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