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1 Answer all parts of the question.

Assume β ≡ 1/kBT = 1 throughout this question.

The composition φ(r) in a certain system obeys
∫

φdr = 0 and, is governed by a
free energy functional

H =

∫

(a

2
φ2 +

κ

2
(∇φ)2 +

γ

2
(∇2φ)2 +B(∇φ)2φ2

)

dr . (1)

(a) Show that, for negative κ and B = 0, upon reducing a the system becomes
unstable to smectic ordering at wavenumber q0 = (−κ/2γ)1/2.

(b) Assuming a functional form φ(r) = A cos(q0z), where z is an arbitrary direction,
find for nonzero B the resulting mean-field free energy per unit volume as a function of
the smectic amplitude A, and show that at this level a continuous transition is predicted
at some a = ac which you should find.

(c) Starting from the identity

e−F = e−F0〈e−(H−H0)〉0,

explain the basis of the Feynman-Bogoliubov inequality F 6 F0 − 〈H0〉0 + 〈H〉0, where
〈X〉0 denotes Z−1

0

∫

Xe−H0D[φ].

(d) In Fourier variables φq, Eq.(1) can be written

H =
+
∑

q

G(q)φqφ−q +
B

V

∑

q1,q2,q3

(−q1 · q2)φq1
φq2

φq3
φ−q1−q2−q3

(2)

where
∑+ denotes a sum over the half space qx > 0 (say), and G(q) = a + κq2 + γq4.

(You are not asked to prove Eq.(2).)

Choosing as trial functional H0 =
∑+

q J(q)φqφ−q, for which F0 =
∑+

q ln(J(q)/π)

and 〈H0〉0 =
∑+

q 1, use the property of zero-mean Gaussian random variables 〈X1X2X3X4〉 =
〈X1X2〉〈X3X4〉+ 〈X1X3〉〈X2X4〉+ 〈X1X4〉〈X2X3〉 to establish that

F 6

+
∑

k

(

ln(J(k)/π) − 1 +
G(k)

J(k)

)

+
4B

V

[

+
∑

k

k2

J(k)

][

+
∑

k

1

J(k)

]

,

after excluding contributions that are negligible for V large and/or vanish by symmetry.

(e) By minimizing over J(q), and then taking the large V limit so that
∑+

k X(k) →
V

2(2π)d

∫

X(k)dk, show that the least upper bound on F arises for the variational choice

J(q) = ā+ κ̄q2 + γq4 (3)

and give a pair of coupled integral equations satisfied by ā and κ̄.

(f) Give a brief reasoned argument for whether the transition to the smectic phase
should be continuous or discontinuous in this model.

Part III, Paper 344



3

2 Answer all parts of the question.

A system is described by a coarse-grained vector order parameter field p(r, t) which
obeys the Langevin equation

ṗ(r, t) = −Γ
δF

δp(r, t)
+ f(r, t)

where F [p(r)] is the free energy, Γ a constant coefficient and f is Gaussian white noise
of probability density P[f(r, t)] = N exp

[

− 1
2σ2

∫

|f(r, t)|2 dr dt
]

with N a normalization
constant. The noise is caused by coupling to a heat bath at temperature T .

(a) State the probability density PF [p(r, t)] for a time evolution p(r, t) connecting
an initial configuration p1(r, t1) of free energy F1, to a final configuration p2(r, t2) of free
energy F2. Write down PB[p(r, t)], the probability density for the time-reversed trajectory,
and briefly explain why the two expressions have the same normalization factor.

(b) Show that
PF

PB
= exp

[

−
2Γ

σ2

∫ 2

1
ṗ
δF

δp
dr dt

]

,

and explain why, if the underlying microscopic dynamics has time-reversal symmetry, this
implies that σ2 = 2ΓkBT .

(c) Consider the case where δF/δp = ap−κ∇2p with a, κ > 0. Suppose the system
was put in contact with the heat bath in the remote past (t = −∞) and undisturbed since
then. Establish that in Fourier variables pq(t), pq(t) =

∫ t
−∞

fq(t
′) exp[−r(q)(t−t′)] dt′, and

give an expression for r(q). Hence or otherwise show that the spatiotemporal correlations
of the order parameter obey

〈pq,i(t1)p−q,j(t2)〉 = δij
kBT

a+ κq2
exp[−r(q)|t1 − t2|]

where pq,i is the ith Cartesian component of the vector pq. You may assume without
proof that 〈fq,i(t)f−q,j(t

′)〉 = 2kBTΓδijδ(t− t′).

(d) The system’s dynamics is now changed, allowing the order parameter to relax
by two independent channels, one corresponding to nonconserved dynamics and the other
conserved. The equations of motion are

ṗj(r, t) = −∇iWij − Γ
δF

δpj(r, t)
+ fj(r, t) ,

Wij(r, t) = −M∇i
δF

δpj(r, t)
+Nij(r, t) .

Here Wij is the flux along i of pj and, alongside fj as defined above, Nij is a Gaussian

white noise obeying P[Nij(r, t)] = NN exp
[

− 1
2σ2

N

∫

Nij(r, t)Nij(r, t) dr dt
]

. Construct the

forward and backward path probabilities PF,B[p(r, t),W(r, t)] for the joint time evolution
of p and W, and give an expression for their ratio. It may help to note that, by the usual
law of conditional probabilities, P[p,W] = P[p|W]P[W].

(e) Assuming that p and W both obey periodic boundary conditions in space, show
that microscopic reversibility remains satisfied if both σ2 = 2ΓkBT and σ2

N = 2MkBT .
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3 Answer all parts of the question.

A system has conserved scalar order parameter φ(r) and a free energy F =
∫

F dr
where F = f(φ) + κ

2 (∇φ)2 and f(φ) = a
2φ

2 + b
4φ

4.

(a) Show by minimizing F that at mean-field level, for negative a, bulk phases
coexist with ±φB where φB = (−a/b)1/2. Show that the same result can be viewed as
requiring equality between phases of the bulk chemical potential µ = f ′(φ) and bulk
pressure Π = µφ− f .

(b) Consider a 3D droplet geometry, with droplet radius R large compared to the
interfacial width ξ0. Show by force balance that the bulk pressures inside and outside the
droplet must differ by a Laplace pressure term 2γ/R where γ is the interfacial tension.
[You are not asked to calculate ξ0 or γ in terms of a, b, κ]. Show that this leads to a
modified coexistence condition φ = ±φB + δ where δ = γ

αφBR with α = f ′′(±φB). Why
are the chemical potentials still equal?

(c) Consider now a 3D droplet of φ = φB + δ residing within a bulk phase that
has φ = −φB at infinity. Supposing the coexistence condition from (b) to still apply
locally, and considering a quasi-static exterior solution ∇2µ = 0 of the diffusion equation
φ̇ = −∇.J, calculate the current J = −M∇µ leaving the droplet surface and use this to
find the time derivative of the radius R. Exterior to the droplet you may neglect gradient
contributions to the local chemical potential µ = δF/δφ and linearise its φ dependence.

(d) Show that the droplet evaporates entirely in a time τ(R0) = 2φ2
BR

3
0/(3Mγ)

where R0 is its initial radius.

(e) Suppose now that a similar droplet of radius R has its centre maintained at a
fixed distance h (with h−R ≫ ξ0) from a flat interface beyond which lies an infinite bulk
of the φ = φB phase. Again consider a quasi-static solution and neglect higher gradient
terms in µ; furthermore, assume that the droplet remains spherical as it shrinks. By
establishing an analogy between∇2µ = 0 with the appropriate boundary conditions and an
electrostatics problem, or otherwise, show that the total current

∫

J.dS leaving the droplet
surface is modified from that in part (c) above by a factor c(R/h) ≡ C(R,h)/C(R,∞)
where C(R,h) is the electrostatic capacitance of a conducting sphere of radius R whose
centre is at a distance h from an infinite plane conductor.

(f) A closed-form approximation to the function c(y) can be found in the electro-
statics literature as

c(y) ≃ 1 +
1

2
ln(1 + y) .

Within this approximation, calculate the leading order correction in small R0/h to the
evaporation time τ(R0) as defined in part (d).

END OF PAPER
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