MAT3, MAMA

MATHEMATICAL TRIPOS Part III

_ -- -- --

Wednesday, 5 June, 2019 $-1:30~\mathrm{pm}$ to $3:30~\mathrm{pm}$

PAPER 335

DIRECT AND INVERSE SCATTERING OF WAVES

Attempt no more than **TWO** questions. There are **THREE** questions in total. The questions carry equal weight.

STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper Rough paper

SPECIAL REQUIREMENTS None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

CAMBRIDGE

2

1 Consider the three-dimensional problem of a time-harmonic source $Q(\mathbf{r})$ enclosed in the volume V outside the closed and continuous surface $S = \partial D$, where D is a scatterer.

The field ψ generated by the source $Q(\mathbf{r})$, satisfies the Helmholtz equation

$$\nabla^2 \psi(\mathbf{r}) + k^2 \psi(\mathbf{r}) = -Q(\mathbf{r}) , \qquad (1)$$

with Sommerfeld boundary conditions at infinity, and some unknown boundary conditions on ∂D .

(i) Using the divergence theorem or otherwise, derive the Kirchhoff-Helmholtz equation. Hence write an expression for the scattered field $\psi_s(\mathbf{r})$ in $\mathbb{R}^3_{\backslash D}$.

(ii) Now assume that the incident field generated by the source is a plane wave $\psi_i(\mathbf{r}) = e^{ik\mathbf{r}\cdot\hat{\mathbf{r}}_0}$, in the direction $\hat{\mathbf{r}}_0$, and that the far field is measured and known.

Write an expression for the far field $f_{\infty}(\hat{\mathbf{r}}, \hat{\mathbf{r}}_0, k)$ associated with $\psi_s(\mathbf{r})$ in terms of an integral over the surface of the scatterer ∂D .

Hence, given the function

$$v_g(\mathbf{r}') = \int_{S_1} e^{ik\hat{\mathbf{r}}\cdot\mathbf{r}'} g(\hat{\mathbf{r}}) ds(\hat{\mathbf{r}}) , \quad \mathbf{r}' \in \mathbb{R}^3 , \qquad (2)$$

where $\int_{S_1} \dots ds(\hat{\mathbf{r}})$ denotes integration over the surface of the unit ball S_1 , and the function $g(\hat{\mathbf{r}}) \in L^2(S_1)$, write an expression for

$$\int_{S_1} f_{\infty}(\hat{\mathbf{r}}, \hat{\mathbf{r}}_0, k) g^*(\hat{\mathbf{r}}) ds(\hat{\mathbf{r}}) \qquad \text{(where } g^* \text{ denotes the complex conjugate)}$$
(3)

in terms of the unknowns ψ_s and v_g only.

(iii) Consider a scatterer D with Dirichlet boundary conditions, and assume that there exists a function $g(\hat{\mathbf{r}}) \in L^2(S_1)$ such that $v_g(\mathbf{r}')$ as defined in (2) is

$$v_g(\mathbf{r}') = -\frac{e^{-ik|\mathbf{r}'|}}{k|\mathbf{r}'|} , \quad \mathbf{r}' \in \partial D , \qquad (4)$$

where $-k^2$ is not an eigenvalue of the interior Dirichlet problem. With this $v_g(\mathbf{r}')$, the expression for (3) simplifies to

$$\int_{S_1} f_{\infty}(\hat{\mathbf{r}}, \hat{\mathbf{r}}_0, k) g^*(\hat{\mathbf{r}}) ds(\hat{\mathbf{r}}) = \frac{1}{k}.$$
(5)

Assuming that the surface of the scatterer ∂D is parametrised as

$$\partial D = \{ \mathbf{r}' = h(\theta) \hat{\mathbf{r}}(\theta, \phi) ; 0 \leqslant \theta \leqslant \pi , \ 0 \leqslant \phi \leqslant 2\pi \} , \tag{6}$$

for some smooth, single-valued function $h(\theta)$, briefly explain how this expression, together with (4) and (5), could be used in principle to solve the inverse problem of recovering the shape of the scatterer. [Note that no analytical solution to this inverse problem is possible, and you are not asked to carry out any calculation when providing this brief explanation.]

UNIVERSITY OF

3

2 A time-harmonic wave $\psi(\mathbf{r})e^{-i\omega t}$ in three-dimensional space is incident upon a inhomogeneity with refractive index $n(\mathbf{r})$ which occupies a volume D in free space.

(i) Derive the first term of both the Born and the Rytov approximations for the space-dependent part of the total field at point \mathbf{r} , and denote them respectively by $\psi_B(\mathbf{r})$ and $\psi_R(\mathbf{r})$.

Show that the first order term in a power series expansion of the Rytov approximation is equal to the Born approximation

(ii) In the case where the incident field is a monochromatic plane wave propagating with wave number k_0 in a direction \mathbf{r}_0 , derive far-field approximations to $\psi_B(\mathbf{r})$ and $\psi_R(\mathbf{r})$.

(iii) For the same incident wave as in (ii), assume that the refractive index in D is $n(\mathbf{r}) = 1 + \mu W(\mathbf{r})$, where $\mu \ll 1$ and $W(\mathbf{r})$ is a statistically stationary random function of position with Gaussian p.d.f. with $\langle W \rangle = 0$, normalised so that $\langle W^2(\mathbf{r}) \rangle = 1$.

The mean intensity in the Rytov approximation is given by

$$I(\mathbf{r}) = \langle \psi_R^*(\mathbf{r})\psi_R(\mathbf{r})\rangle \tag{1}$$

Derive an expression for $I(\mathbf{r})$ in the far field in terms of the autocorrelation function of the 'scattering potential' $V = k_0^2 [n^2(\mathbf{r}) - 1]$.

[You may wish to use $Re(f) = \frac{1}{2}(f + f^*)$, for a complex function f; and the Taylor expansion when calculating $\langle \exp(\phi) \rangle$ for a random phase ϕ .]

UNIVERSITY OF

3 Consider the inverse problem

$$Ax = y (1)$$

where x is the unknown and A is a compact linear operator between two Hilbert spaces: $A: X \mapsto Y$.

4

(i) Give the definition of the Moore-Penrose generalised inverse solution x^{\dagger} , and of the Moore-Penrose operator A^{\dagger} for (1).

Write the generalised inverse x^{\dagger} in terms of the singular value system for A, $\{\sigma_n; v_n; u_n\}$ $(n \in \mathbb{N})$, hence explain why the Moore-Penrose operator can be unbounded.

(ii) Define what is meant by a regularisation strategy R_{α} for A^{\dagger} , and formally write the regularised solution $x_{\alpha} = R_{\alpha}y$ in terms of a filter function $f_{\alpha}(\sigma_i)$.

- (iii) Derive the Landweber iteration scheme for solving (1), and explain
 - (a) why Landweber iteration can be a regularisation method and how the regularisation parameter α needs to be chosen;
 - (b) how the error in the approximation x_n can be split into a component due to the regularisation and one due to the error in the data.

In your answer to (iii)(b), use the result that, given exact data y and noisy data $y^{(\delta)}$ such that $|| y^{(\delta)} - y || \leq \delta$, with x_n and $x_n^{(\delta)}$ the corresponding Landweber iteration sequences, we have $|| x_n - x^{(\delta)} || \leq \sqrt{n\delta}$.

(iv) Given that the n^{th} Landweber iterate has the closed form representation

$$x_n = \sum_{k=0}^{n-1} (\mathbb{I} - A^* A)^k A^* y , \qquad (2)$$

derive an expression for the filter function $f_{\alpha}(\sigma_i)$ for the Landweber iteration as a regularisation strategy.

[You may wish to use the partial sum $\sum_{k=0}^{n-1} r^k = \frac{1-r^n}{1-r}$.]

END OF PAPER