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1 Consider the three-dimensional problem of a time-harmonic source Q(r) enclosed
in the volume V outside the closed and continuous surface S = ∂D, where D is a scatterer.

The field ψ generated by the source Q(r), satisfies the Helmholtz equation

∇2ψ(r) + k2ψ(r) = −Q(r) , (1)

with Sommerfeld boundary conditions at infinity, and some unknown boundary conditions
on ∂D.

(i) Using the divergence theorem or otherwise, derive the Kirchhoff-Helmholtz
equation. Hence write an expression for the scattered field ψs(r) in R

3
\D.

(ii) Now assume that the incident field generated by the source is a plane wave
ψi(r) = eikr·r̂0 , in the direction r̂0, and that the far field is measured and known.

Write an expression for the far field f∞(r̂, r̂0, k) associated with ψs(r) in terms of an
integral over the surface of the scatterer ∂D.

Hence, given the function

vg(r
′) =

∫
S1

eikr̂·r
′

g(r̂)ds(r̂) , r′ ∈ R
3 , (2)

where
∫
S1
. . . ds(r̂) denotes integration over the surface of the unit ball S1, and the function

g(r̂) ∈ L2(S1), write an expression for

∫
S1

f∞(r̂, r̂0, k)g
∗(r̂)ds(r̂) (where g∗ denotes the complex conjugate) (3)

in terms of the unknowns ψs and vg only.

(iii) Consider a scatterer D with Dirichlet boundary conditions, and assume that
there exists a function g(r̂) ∈ L2(S1) such that vg(r

′) as defined in (2) is

vg(r
′) = −e

−ik|r′|

k|r′| , r′ ∈ ∂D , (4)

where −k2 is not an eigenvalue of the interior Dirichlet problem. With this vg(r
′), the

expression for (3) simplifies to

∫
S1

f∞(r̂, r̂0, k)g
∗(r̂)ds(r̂) =

1

k
. (5)

Assuming that the surface of the scatterer ∂D is parametrised as

∂D = {r′ = h(θ)r̂(θ, φ) ; 0 6 θ 6 π , 0 6 φ 6 2π} , (6)

for some smooth, single-valued function h(θ), briefly explain how this expression, together
with (4) and (5) , could be used in principle to solve the inverse problem of recovering the
shape of the scatterer. [Note that no analytical solution to this inverse problem is possible,
and you are not asked to carry out any calculation when providing this brief explanation.]
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2 A time-harmonic wave ψ(r)e−iωt in three-dimensional space is incident upon a
inhomogeneity with refractive index n(r) which occupies a volume D in free space.

(i) Derive the first term of both the Born and the Rytov approximations for the
space-dependent part of the total field at point r, and denote them respectively by ψB(r)
and ψR(r).

Show that the first order term in a power series expansion of the Rytov approxima-
tion is equal to the Born approximation

(ii) In the case where the incident field is a monochromatic plane wave propagating
with wave number k0 in a direction r0, derive far-field approximations to ψB(r) and ψR(r).

(iii) For the same incident wave as in (ii), assume that the refractive index in D is
n(r) = 1+µW (r), where µ≪ 1 and W (r) is a statistically stationary random function of
position with Gaussian p.d.f. with 〈W 〉 = 0, normalised so that 〈W 2(r)〉 = 1.

The mean intensity in the Rytov approximation is given by

I(r) = 〈ψ∗
R(r)ψR(r)〉 (1)

Derive an expression for I(r) in the far field in terms of the autocorrelation function of
the ‘scattering potential’ V = k20 [n

2(r)− 1].

[You may wish to use Re(f) = 1
2(f + f∗), for a complex function f ; and the Taylor

expansion when calculating 〈exp(φ)〉 for a random phase φ.]
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3 Consider the inverse problem

Ax = y , (1)

where x is the unknown and A is a compact linear operator between two Hilbert spaces:
A : X 7→ Y .

(i) Give the definition of the Moore-Penrose generalised inverse solution x†, and of
the Moore-Penrose operator A† for (1).

Write the generalised inverse x† in terms of the singular value system for A, {σn; vn;un}
(n ∈ N), hence explain why the Moore-Penrose operator can be unbounded.

(ii) Define what is meant by a regularisation strategy Rα for A†, and formally write
the regularised solution xα = Rαy in terms of a filter function fα(σi).

(iii) Derive the Landweber iteration scheme for solving (1), and explain

(a) why Landweber iteration can be a regularisation method and how the
regularisation parameter α needs to be chosen;

(b) how the error in the approximation xn can be split into a component due
to the regularisation and one due to the error in the data.

In your answer to (iii)(b), use the result that, given exact data y and noisy data

y(δ) such that ‖ y(δ) − y ‖6 δ, with xn and x
(δ)
n the corresponding Landweber iteration

sequences, we have ‖ xn − x(δ) ‖6 √
nδ.

(iv) Given that the nth Landweber iterate has the closed form representation

xn =

n−1∑
k=0

(I−A∗A)kA∗y , (2)

derive an expression for the filter function fα(σi) for the Landweber iteration as a
regularisation strategy.

[You may wish to use the partial sum
∑n−1

k=0 r
k = 1−rn

1−r
. ]
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