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The rotating shallow water equations can be written

∂u

∂t
+ u · ∇u+ f k̂× u = −g∇η +D+W, (1)

∂H

∂t
+∇ · (uH) = 0, (2)

where u = (u, v) and ∇ = (∂x, ∂y) are the horizontal velocity and horizontal gradient

operators, f is the local Coriolis parameter, k̂ is the vertical unit vector, g is the
graviational acceleration, H = H0(x, y)+ η(x, y, t) is the total fluid depth where H0 is the
resting depth and η is the dynamic sea surface height, and D and W represent dissipation
and the wind stress, respectively. Starting from the above equations, derive an equation
for flow in Sverdrup balance, clearly stating all assumptions made.

Consider a closed contour, C, in the interior of an ocean basin where the flow satisfies
(1) and assume that H is constant. Show that the circulation around this contour satisfies

∮

C

∂u

∂t
· t̂ds = −

∮

C

[
(ζ + f)k̂× u

]
· t̂ds+

∮

C
W · t̂ds +

∮

C
D · t̂ds, (3)

where ζ = (∇ × u) · k̂ is the vertical component of the relative vorticity and t̂ is a unit
vector tangential to the contour.

Consider an island in the middle of an ocean basin. Assuming there is no normal
flow across the boundary of the island, show that the circulation around the island satisfies

∂

∂t

∮

CI

u · t̂ds =
∮

CI

W · t̂ds+
∮

CI

D · t̂ds, (4)

where CI is the contour coincident with the boundary of the island.

Now, consider an island within an enclosed ocean basin where the flow is in Sverdrup
balance. Assume that the dissipation D is non-zero on the eastern boundary of the island
and on the western boundary of the basin, but can be neglected elsewhere. Further
assume that there is no flow normal to the boundary of the ocean basin and without loss
of generality, let the streamfunction be zero at the boundary of the ocean basin. Obtain
an expression for the streamfunction ψI that encircles the island. By selecting a contour
that avoids any regions with non-zero dissipation, show that ψI can be written in terms
of W.

Consider a square island in a rectangular ocean basin. Let the sides of the island
have a length R, while the centre of the island, denoted x = 0, y = 0, is a distance S
from the eastern boundary of the ocean basin. If the wind stress is W(y) = sin(πy)x̂
and the flow in the ocean basin is in Sverdrup balance, obtain an expression for the
volume transport between the island and the eastern side of the ocean basin. Discuss the
influence of the island on the strength of any boundary current that develops along the
western boundary of the ocean basin.
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The stratified quasi-geostrophic (QG) equations can be written

∂q

∂t
+ J(ψ, q) = 0,

where

q = ∇2ψ +
∂

∂z

(
f20
N2

0

∂ψ

∂z

)

is the QG potential vorticity, ∇ = (∂x, ∂y) is the horizontal gradient operator, f0 is
the constant Coriolis parameter, N0 is the constant buoyancy frequency, and J(A,B) =
AxBy −AyBx is the Jacobian operator.

Consider a semi-infinite fluid with buoyancy b = N2
0 z − Λf0y bounded below by a

flat, rigid surface located at z = 0 and Λ is constant. The velocity associated with the
basic state, U , is in thermal wind balance and satisfies U = 0 at z = 0. Find the dispersion
relation for quasi-geostrophic perturbations to this basic state.

Now, consider an unbounded fluid consisting of two regions each with constant
buoyancy gradients such that

b = N2
1 z − Λ1f0y, for z < h(y),

b = N2
2 z − Λ2f0y, for z > h(y).

In each region there is a flow in thermal wind balance and departures to this flow can be
described in terms of the stratified QG equations. State and justify appropriate boundary
conditions at z = h. Show that, consistent with the QG approximation, the boundary
condition can be applied at a constant height. Find the phase speed of quasi-geostrophic
perturbations with respect to the thermal wind. Show that in a suitable limit of N1/N2

the phase speed matches the phase speed for a semi-infinite fluid that you found above.
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The effect of compressibility may be included in the β-plane primitive equations
by re-defining the z coordinate in terms of pressure p as z = −H log(p/p0), where H is
a constant ‘scale height’ (equal to about 7 km for the Earth’s atmosphere) and p0 is a
constant pressure. The resulting form of the equations is:

ut + (u ·∇)u− (f0 + βy)v = −Φ̃x, (1)

vt + (u ·∇)v + (f0 + βy)u = −Φ̃y, (2)

Φ̃z =
RT̃

H
, (3)

T̃t + (u ·∇)T̃ + S(z)w = 0, (4)

ux + vy + ez/H(e−z/Hw)z = 0, (5)

where S(z) > 0 and R > 0 is a constant. (Note that the structure of these equations is
very similar to those of the Boussinesq primitive equations considered in lectures.)

The velocity u may be divided into geostrophic and ageostrophic parts, respectively
ug, where ug = f−1

0 (−Φ̃y, Φ̃x, 0), and ua = (ua, va, wa).

Starting from (1)-(5) derive the corresponding form of the quasi-geostrophic poten-
tial vorticity equation:

{ ∂
∂t

+ ug ·∇}{ψxx + ψyy + ez/H
∂

∂z
(e−z/H f20

N2

∂ψ

∂z
)}+ βψx = 0, (6)

where ψ = Φ̃/f0. Give the definition of N in terms of other quantities appearing in (1)-(5).

In your derivation assume that typical horizontal and vertical length scales are
respectively L and D, a typical velocity is U and a typical time scale is L/U and
explain carefully why each of the three dimensionless quantities U/f0L, βL/f0 and
(f20L

2H/RSDmin{D,H})(U/f0L) must be small for (6) to provide a good description
of the dynamics. [You may find it useful to consider the relative sizes of the components
of ua, as implied by (5).]

In the remainder of the question assume that N is constant. Derive from (6) an
equation describing small disturbances about a state of rest and show that there are plane-
wave solutions of the form ψ = Re(ψ̂c e

z/2Heikx+imz−iωt), with ψ̂c constant, providing that
ω is a certain function (to be given) of k and m. [You may assume here and subsequently
that k > 0.]

Consider motion in the region 0 < z < ∞ which is disturbed from a state of
rest by some physical effect which sets ψ = ψb(x, t) = Re(Ψb exp(ikx − iωt)) on z = 0.
(Continue to assume that the disturbances are small.) Seek a corresponding solution
ψ(x, y, z, t) = Re(ez/2H χ̂(z) exp(ikx − iωt)). Derive the equation satisfied by χ̂(z) and
solve it, distinguishing between different ranges of ω and explaining carefully what criteria
you use to determine a unique solution. Deduce, for given k, the range of values of ω for
which there are vertically propagating waves.

[Assume that it is appropriate to require that solutions have |χ̂(z)| bounded as
z → ∞.]
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The shallow-water equations on an equatorial β-plane, linearised about a state of
rest with layer depth H, are

ut − βyv = −gηx, (1)

vt + βyu = −gηy (2)

ηt +H(ux + vy) = 0. (3)

The gravity-wave speed c is equal to
√
gH.

Consider equatorially confined solutions of the form [u, v, η] = Re([û(y), v̂(y), η̂(y)]ei(kx−ωt)),
with the constants k and ω representing, respectively, x-wavenumber and frequency. (As-
sume ω > 0.)

Derive equations for û(y) and η̂(y) in terms of v̂(y).

Deduce that if ω = ±kc there is a possible solution with v̂(y) = 0, with û(y) 6= 0
and η̂(y) 6= 0. Find an ordinary differential equation describing the structure of û(y) in
this case and deduce that only ω = kc gives an equatorially confined solution. Give the
form of û(y) and η̂(y) in this case.

If v̂(y) 6= 0 show that it satisfies the second order differential equation

d2v̂

dy2
+ (

ω2

c2
− β2y2

c2
− k2 − βk

ω
)v̂ = 0.

The differential equation V ′′(Y ) − Y 2V (Y ) = λV (Y ) has solutions which tend to
zero as |Y | → ∞ only when λ = −(2n + 1), (n = 0, 1, 2, . . . ) when V (Y ) = D̃n(Y ), with
D0(Y ) = exp(−1

2Y
2).

Deduce that

ω2 − c2k2 − βkc2/ω = (2n + 1)βc for n = 0, 1, 2, . . . . (4)

What is the corresponding form of v̂(y)?

Considering (4) as an equation that specifies k given ω show that for n = 0 there
is a root k = ω/c − β/ω. (There is another root k = −ω/c which further analysis shows
does not correspond to acceptable solutions for û and η̂.) Write down the form of v̂(y) for
n = 0, assuming that v̂(0) = 1, and then deduce the corresponding expressions for û(y)
and η̂(y). Analyse and comment on the dominant balance in the x-momentum equation
(1) in the low-frequency limit ω ≪ (βc)1/2 and in the high frequency limit ω ≫ (βc)1/2.

Show that for n > 1 there are real solutions for k only if ω2 > βc(n+ 1
2+

√
n(n+ 1))

or ω2 6 βc(n + 1
2 −

√
n(n+ 1)).

Using results from previous parts of the question, consider the response of the system
to an equatorially confined forcing, localised in x, with specified frequency ω = 1

2(βc)
1/2.

Will this forcing excite propagating waves and, if so, what will be the wavenumbers and
will the waves be detected to the east or to the west of the forcing?
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