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A uniform rain, of strength R m/s, falls on a two-dimensional aquifer of total length
x = L, bounded below by an impermeable horizon along z = 0, and feeding a river located
at (x, z) = (0, 0). The porosity φ of the aquifer is uniform, but the permeability is depth-
dependent, and given by k = k0(1 + βz), where k0 is the reference permeability at z = 0
and β > 0. Derive an equation for the evolution of the height of the groundwater table,
h(x, t), subject to the conditions that the height at the river h(0, t) = 0 and that the total
flux at the drainage divide q(L, t) = 0.

(a) Using your equation for the evolution of the groundwater table, first examine
the long-time steady state that is reached if the rain persists and show that in this limit
the depth of the groundwater table is given implicitly by

h2 + 1

3
βh3 =

R

ub
(2Lx− x2), (1)

where ub = k0gρ/µ is the buoyancy velocity, g is the gravitational acceleration, ρ the
density of water and µ the viscosity of water.

(b) Now examine the transient filling of the aquifer, assuming that the rainfall starts
at t = 0 and that the aquifer is initially empty, h(x, 0) = 0. Using scaling arguments, show
that the filling of the aquifer is self-similar, with different time dependence for early times
t ≪ 2φ/(Rβ) and intermediate times 2φ/(Rβ) ≪ t ≪ φ(L/R)2/3(ubβ/2)

−1/3, and derive
the equations governing these self-similar solutions. Find an expression for the flux into
the river in both early and intermediate time limits, and explain the origins of the temporal
regimes.

(c) Finally, when the rain stops, R = 0 the aquifer discharges the remaining water
into the river, again in two distinct regimes. Find two distinct self-similar regimes of dis-
charge, describing the equations governing the shape of the self-similar profiles, the scalings
for the discharge flux to the river in each regime, and the timescale for transition between
regimes.
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(a) Consider a rigid mushy region of pure ice crystals of density ρs and interstitial
brine (salt solution) of density ρl, where ρs 6= ρl but both densities are assumed to be
independent of temperature and concentration.

Use mass conservation over a small representative region of mush to derive the
equation

∇ · u = (1− r)
∂ϕ

∂t
,

where ϕ is the volume fraction of ice crystals, r = ρs/ρl, u is the Darcy velocity (flux per
unit volume) of liquid relative to the ice crystals, and t is time.

If it is assumed that the heat capacity per unit volume and the thermal conductivity
are independent of phase and that diffusivity of salt is negligible then the equations for
heat and mass conservation and local thermodynamic equilibrium in the mushy layer are

∂T

∂t
+ u · ∇T = κ∇2T +

L

cp

∂ϕ

∂t
,

(1− ϕ)
∂C

∂t
+ u · ∇C = rC

∂ϕ

∂t
,

T − T0 = −m(C − C0),

where T is temperature, C is salt concentration of the liquid, κ is the thermal diffusivity,
L is the latent heat of fusion, cp is the specific heat capacity of ice, m is the constant slope
of the liquidus, and C0 is a reference concentration at which the liquidus temperature is
T0.

(b) Consider a system pulled vertically downwards at speed V through fixed heat
exchangers such that, in a frame of reference fixed with the heat exchangers, the system
is steady and the vertical position z = 0 corresponds to the eutectic temperature TE .
Far above the eutectic front, the composition and temperature of the liquid are C0 and
T∞ > T0 respectively.

(i) Assuming that the composite, eutectic solid also has density ρs, determine the
velocity field throughout the system in terms of ϕ.

(ii) Determine the solid fraction ϕ in terms of the dimensionless temperature θ =
(T − T0)/∆T . You may assume without proof that ϕ = 0 and C = C0 at the
mush–liquid interface.

In the following, assume that S ≫ 1 and C ≫ 1 with S/C = O(1), where
S = L/cps∆T , C = mC0/∆T and ∆T = T0 − TE .

(iii) Determine the dimensionless temperature field θ(z) in both the liquid and mushy
regions.

(iv) Show that the thickness of the mushy layer h is given by

V h

κ
=

1

rΩ
ln

(

1 +
Ω

θ∞

)

,

where Ω = 1 + S/rC and θ∞ = (T∞ − T0)/∆T .
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Consider a porous matrix composed of a mixture of solid rock and ice, saturated in
water, all initially at the melting temperature Tm. Hot water, at temperature Tm +∆T ,
is injected into the matrix with volumetric flux U , causing the ice to melt, resulting in
an increase in the liquid fraction, φ → φ + ∆φ, and an increase in the permeability,
k → k +∆k, of the matrix. Assume that the rock is highly thermally conductive and so
is at the same temperature as the water flowing through it.

(a) Using expressions of conservation of mass and energy at the evolving interface,
derive the fluid velocity in the pre-existing matrix, and show that the melting front travels
at a speed

V =
U

1 + S∆φ
, (1)

where S = L/cp∆T is the Stefan number and cp is the specific heat capacity (of all phases).
You should neglect any thermal diffusion, and instead consider only the jump in quantities
across the evolving interface.

(b) Now consider the stability of the interface in the limit where S∆φ ∼ O(1) and
show that perturbations to the interface have growth rate

σ =
αU

1 + S∆φ

∆k

2k +∆k
, (2)

where α is the transverse wavenumber of the instability.

(c) Interpret your results physically, suggesting potential mechanisms that could be
included to provide a means for selecting the most unstable wavelength.
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An axisymmetric, conical, peaked mountain has height Hm and sides of fixed angle
to the horizontal α. The net annual accumulation of snow on the mountain is

a(x) = A
H(x)−H0

Hm −H0

, (1)

where A is a constant amplitude, H(x) is the local elevation, x is distance along slope
from the apex of the mountain, and the snowline is at a constant height H0 < Hm.

(a) Starting from the lubrication forms of the Navier-Stokes and mass-conservation
equations, show that the thickness of ice h(x, t) satisfies the equation

∂h

∂t
= −

1

x

∂

∂x

(

g sinα

3ν
xh3

)

+A
H(x)−H0

Hm −H0

,

where ν is the kinematic viscosity of ice and g is the acceleration due to gravity. You
should state clearly any assumptions you make and any boundary conditions you
apply. You may assume that ice flows as a Newtonian, viscous fluid, that h ≪ H0

and that |∂h/∂x| ≪ tanα.

Determine the steady shape of the ice sheet, stating carefully any boundary
conditions that you use and giving an explicit expression for the extent of the current
xN . Show that the volume of ice in the current is

V0 = λ

(

νA∆H7

g sin8 α

)1/3

cosα,

where ∆H = Hm−H0, giving an expression for the coefficient λ as a dimensionless
integral, which need not be evaluated.

(b) Some time after the steady state has been established, the net accumulation rate is
set to zero (no further accumulation nor loss of ice). Find a similarity solution for
the subsequent flow of the ice, determining its self-similar profile, its extent xN (t)
and its thickness at its terminus hN = h(xN ).

(c) Imagine that the mountain is initially bare of ice h(x, t) ≡ 0 and that the ice
accumulation (1) is suddenly switched on at time t = 0 and maintained thereafter.
Use scaling analysis to describe qualitatively the subsequent evolution of h(x, t),
identifying the time scales of any significant transitions in behaviour.
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