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Consider infinitesimal, two-dimensional perturbations about a parallel shear flow
in an inviscid, stratified fluid in a finite depth domain z ∈ [−L,L] between impermeable
boundaries:

u = U(z)x̂ + u′(x, z, t);Umin 6 U 6 Umax,

p = p(z) + p′(x, z, t),

ρ = ρ(z) + ρ′(x, z, t),
[

u′, p′, ρ′
]

= [û(z), p̂(z), ρ̂(z)] exp[ik(x − ct)]; û = (û, ŵ),

where the wavenumber k is assumed real, the phase speed c = cr + ici may in general be
complex, and gravity g = −gẑ acts in the negative z−direction.

(a) Applying the Boussinesq approximation appropriately, show that the vertical velocity
eigenfunction ŵ satisfies the Taylor-Goldstein equation:

(

d2

dz2
− k2

)

ŵ −
ŵ

(U − c)

d2

dz2
U +

N2ŵ

(U − c)2
= 0; N2 = −

g

ρ0

dρ

dz
,

where N is the buoyancy frequency and ρ0 is an appropriate reference density.

(b) Let ŵ = (U − c)aq for arbitrary real a.

(i) Show that

∫ L

−L

(U − c)2a
[

|qz|
2 + k2|q|2

]

dz =

∫ L

−L

[(

N2 + a(a− 1)[U z]
2
)

(U − c)2a−2
]

|q|2dz

+

∫ L

−L

[

(a− 1)U zz(U − c)2a−1
]

|q|2dz,

where subscripts denote differentiation with respect to z.

(ii) Using an appropriate choice of a, show that the flow must be marginally stable
if

4N2 >

(

dU

dz

)2

,

for all z ∈ [−L,L].

(iii) Using a different choice of a, show that Umin < cr < Umax if the flow is unstable.
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2

Consider infinitesimal, two-dimensional perturbations about a parallel shear flow in
an inviscid, stratified fluid:

u = U(z)x̂+ u′(x, z, t),

p = p(z) + p′(x, z, t),

ρ = ρ(z) + ρ′(x, z, t),
[

u′, p′, ρ′
]

= [û(z), p̂(z), ρ̂(z)] exp[ik(x − ct)]; û = (û, ŵ),

where the wavenumber k is assumed real, the phase speed c = cr + ici may in general be
complex, and gravity g = −gẑ acts in the negative z−direction.

(a) Assume that there is a piecewise constant distribution of background density ρ. Also
assume that there is either a piecewise constant distribution or a piecewise linear
distribution of background velocity U . Show that the appropriate jump conditions at
interfaces, where at least one of the density, vorticity or velocity are discontinuous,
are given by:

[

ŵ

(U − c)

]+

−

= 0;

[

(U − c)
d

dz
ŵ − ŵ

d

dz
U −

gρ

ρ0

(

ŵ

(U − c)

)]+

−

= 0.

In the Boussinesq approximation, you are given that the vertical velocity eigenfunction
ŵ satisfies the Taylor-Goldstein equation:

(

d2

dz2
− k2

)

ŵ −
ŵ

(U − c)

d2

dz2
U +

N2ŵ

(U − c)2
= 0; N2 = −

g

ρ0

dρ

dz
,

where N is the buoyancy frequency and ρ0 is an appropriate reference density.

(b) Consider a three-layer flow:

U =























∆Uz
h

∆Uz
h

∆Uz
h

, ρ =























ρ0 −
∆ρ
2

z > h
2
;

ρ0 |z| < h
2
;

ρ0 +
∆ρ
2

z < −h
2
.

(i) Show that c̃ = 2c/∆U satisfies

c̃4 −

(

2 +
J

α

)

c̃2 +
(2α− J)2 − J2e−4α

4α2
= 0,

where α = kh/2 and J = g∆ρh/[ρ0∆U
2].

(ii) Hence show that the flow is unstable for

2α

1 + e−2α
< J <

2α

1− e−2α
.

(iii) Interpret this instability in terms of a wave resonance in the limit of large
wavenumber.
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Consider the equation

dx

dt
= Lx =

[

λ1 0
1 λ2

][

x1
x2

]

. (⋆)

The energy E(t) of the solution at a given time is defined as E = x1(t)
2 + x2(t)

2.

(a) Show by induction that

L
n =

[

λn1 0
λn

1
−λn

2

λ1−λ2
λn2

]

,

and hence that

A(t) = eLt =

∞
∑

n=0

(Lt)n

n!
=

[

eλ1t 0
eλ1t−eλ2t

λ1−λ2
eλ2t

]

.

(b) Confirm that A(t)x(0) is the solution to (⋆).

(c) Demonstrate that L is a non-normal matrix. Find its eigenvectors and demonstrate
that they are not orthogonal.

(d) For the case λ1, λ2 < 0, find the set of initial conditions (x1, x2) where the energy grows
immediately. Hence find conditions on λ1 and λ2 under which no energy growth is
possible.

(e) Find a general expression for the maximum energy growth G(t) = E(t)/E(0) at some
time t. If λ2 > λ1, show that

lim
t→∞

G = (1 + α2)e2λ2t, (†)

where the constant α2 is to be found. Find the initial condition to achieve the optimal
long-time growth of (†) and comment on its relationship to the eigenvector of L

corresponding to the eigenvalue λ2.
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Two-dimensional Rayleigh-Darcy convection in a porous layer is described by the
equations

∇2ψ = −R
∂θ

∂x
&

∂θ

∂t
+
∂ψ

∂z

∂θ

∂x
−
∂ψ

∂x

∂θ

∂z
= ∇2θ

with boundary conditions ψ = 0 and θ = −1 at the top boundary z = 1 and ψ = 0 and
θ = 0 at the lower boundary z = 0 where ψ(x, z, t) is the streamfunction, θ(x, z, t) is the
temperature and R is the Rayleigh number.

(a) Show that ψ0 = 0 and θ0 = −z is the basic conductive solution.

(b) Taking perturbations ψ = ψ0 + ψ′ and θ = θ0 + θ′, linearize the system. Hence show
that with normal modes of the form (ψ′, θ′)(x, z, t) = (ψ̂, θ̂)(z)est+ikx the eigenvalue s
is given by

s =
k2R

k2 + n2π2
− (k2 + n2π2) for n = 1, 2, . . . .

Find the lowest value of R = Rc for convection to occur and confirm that the most
unstable mode has a wavelength of 2 in the x-direction.

(c) Now consider the weakly nonlinear saturation of the convection for R = Rc+ε
2 where

ε ≪ 1. By introducing the slow time scale T such that T = ε2t, show that the
equations can be written as

∇2ψ′ +Rc
∂θ′

∂x
= −ε2

∂θ′

∂x
,

∇2θ′ −
∂ψ′

∂x
= ε2

∂θ′

∂T
+
∂ψ′

∂z

∂θ′

∂x
−
∂ψ′

∂x

∂θ′

∂z
.

(d) By assuming expansions

ψ′(x, z, t) = εA(T )ψ1(x, z) + ε2A(T )2ψ2(x, z) + ε3A(T )3ψ3(x, z) + . . .

θ′(x, z, t) = εA(T )θ1(x, z) + ε2A(T )2θ2(x, z) + ε3A(T )3θ3(x, z) + . . .

find θ1 if ψ1 = cos πx sinπz. By considering the problem at O(ε2), find ψ2 and θ2.

(e) Write down the equations which ψ3 and θ3 must solve, and using the fact that

∫ 1

0

∫ 2

0

ψ1

[

∇4ψ3 +Rc

∂2ψ3

∂x2

]

dxdz = 0,

derive the amplitude equation

dA

dT
= αA− βA3,

where the coefficients α and β need only be expressed in terms of integrals involving
ψ1, θ1, ψ2 and θ2.
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