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The concentration C of insoluble surfactant on the surface of an inviscid bubble
immersed in a viscous fluid obeys the equation

DC

Dt
= −C[∇s·us + (u·n)∇s·n] +Ds∇

2
sC , (†)

where n is the unit normal out of the bubble, us = Is·u the tangential fluid velocity and
∇s = Is·∇ the tangential gradient operator; (Is)ij = δij − ninj is the local projection
tensor onto the interface. Describe the physical interpretation of each of the terms in (†).

Consider the steady concentration C(x) on a spherical bubble of radius a with an
interfacial velocity u = Is(n)·A·x, where A is a constant, symmetric, traceless second-
rank tensor, and x is the position vector from the centre of the bubble. Under what
condition on a, Ds and |A| is it possible to simplify (†) by writing C = C0 + C ′, where
|C ′| ≪ C0 and C0 is uniform? Assuming that this condition is satisfied, show that

∇s·us = −3n·A·n and C ′ = Kn·A·n ,

where the constant of proportionality K should be found.

[You may use the results ∇sn = Is/a and ∇2
s(ninj) = 2(δij − 3ninj)/a

2.]

For C ′ ≪ C0 the surface-tension coefficient is given by γ(C) = γ0 − γ1C
′, where

γ0 = γ(C0) and γ1 is a positive constant. Viscous stresses and the variation of surface

tension deform the shape of the drop slightly to r = a

(

1 +
x·D·x

r2

)

, with curvature

κ =
2

a
+

4

a

x·D·x

a2
+O(|D|2) ,

where D is a constant, symmetric, traceless second-rank tensor, and |D| ≪ 1. Write down
the general stress boundary condition for a fluid–fluid interface with surface tension γ and
curvature κ, and show that in this case it linearises to

[σ·n]+
−
=

2γ0n

a
+

4γ0
a

(n·D·n)n+
2Kγ1
a

(

Is·A·n− (n·A·n)n
)

.

Assuming that u → E·x as r/a → ∞ and that A = αE and D = βE in a steady
state, explain why the Papkovich–Neuber potentials for the flow can be written in the
form

Φ =
Pa3

3
E·∇

1

r
χ =

1

2
x·E·x+

Qa5

3
E:∇∇

1

r
,

where P and Q are constants. Given that these potentials correspond to

u = (1 + P − 3Q)(n·E·n)x+ (1 + 2Q)Is·E·x

σ·n = 2µ(1− 3P + 12Q)(n·E·n)n+ 2µ(1 + P − 8Q)Is·E·n

on r = a, show that in steady state the deformation of the bubble is given by

D =
5µEa

γ0

(

2 +M

5 + 2M

)

,

where M = Kγ1/µa.

Show that α → 0 as M → ∞ and interpret this result physically.
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Consider axisymmetric stretching of a thin planar sheet of viscous fluid that varies
on a much longer radial length scale than its thickness. Let the sheet have thickness
h(r, t), where |∂h/∂r| ≪ 1, and let the velocity have components (u, 0, w) with respect to
cylindrical polar coordinates (r, θ, z).

By considering the rate of extension of small material line elements, or otherwise,
write down the components err, eθθ and ezz of the strain-rate tensor. Check that your
answers are consistent with the incompressibility condition (1/r)∂(ru)/∂r + ∂w/∂z = 0.

The top and bottom surfaces of the sheet are acted on by an applied external
pressure pext(r), but are free of any shear stress. Surface tension on these surfaces is
negligible and there is no body force. Show that

σθθ = −pext + 4µ
u

r
+ 2µ

∂u

∂r

and find a similar expression for σrr.

Sketch the forces acting on the four sides of a ‘pineapple-chunk’ portion of the sheet
extending from r to r+ δr and from −δθ to +δθ, and write down the r-component of the
force acting on the top and bottom surfaces of the chunk. Hence derive the equation

2µ

[

∂

∂r

(

2rh
∂u

∂r
+ hu

)

− h
(2u

r
+

∂u

∂r

)

]

= rh
∂pext
∂r

.

Write down the equation for ∂h/∂t resulting from mass conservation in the chunk.

(a) The spread of a very viscous circular oil slick over a flat sea is described by the
above equations with pext = ∆ρ gh arising from the jump in modified pressures. Assume
that the boundary condition at the edge of the slick r = R(t) is hσrr = −1

2∆ρ gh2 (with
h(R) > 0).

Find a similarity solution for the spread of a fixed volume V released at the origin.
[Hint: Find the velocity similarity function U(η) from mass conservation, show that
dH/dη = 0 and determine the constants.]

(b) At t = 0 a small hole is made in the centre of a circular viscous sheet of
uniform thickness h0, which is supported by a stationary rigid boundary of radius R0. The
growth of the hole, of radius R(t), due to surface tension acting on its edge is described
by the above equations with pext = 0 (since curvatures are small away from the edge).
By sketching a section through the edge of the hole, or otherwise, give a brief physical
interpretation of the boundary condition hσrr = −2γ at r = R(t).

Show that if h is uniform at any time then u is of the form Ar + B/r and thus h
remains uniform. Find A and B, and show that R(t) obeys the equation

dx

dt
=

γ

µh0

x(1− x2)2

1 + 3x2
,

where x(t) = R(t)/R0.
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A rigid sphere of radius a moves with velocity U = (U, 0, 0) and angular velocity
Ω = (0,Ω, 0) through a semi-infinite body of viscous fluid in z > 0 bounded by a rigid
stationary plane at z = 0. Show that the force F and couple G exerted by the sphere on
the fluid each have only one nonzero cartesian component, F and G say.

Let the centre of the sphere be at (0, 0, (1 + ǫ)a) in the co-moving frame, with
0 < ǫ ≪ 1. Use the equations of lubrication theory to derive the partial-differential
equation (the Reynolds equation) that determines the pressure p(x, y) in the thin gap
beneath the sphere in terms of the gap thickness h(x, y).

Verify that this equation is satisfied by p = Ax/h2 for a suitable choice of A. Deduce
that

σxz
µ

=
6(U − Ωa)x2

5ah2
+

2U + 8Ωa

5h
on z = 0 .

Obtain similar expressions for σxz on z = h and for σyz on z = 0 and z = h.

The cartesian components of G can be calculated to leading order as integrals
involving σxz and σyz over the thin-gap region r ≪ a. Explain briefly why these expressions
are consistent (at leading order) with two of these components being zero.

Show that the leading-order contribution to F from the thin-gap region r ≪ a is
given by

F =
4

5
πµa(4U +Ωa) ln

1

ǫ
.

[You may assume that
∫ O(a)

0

r2n+1 dr

hn
= Cn ln

1

ǫ
+O(1) ,

the leading-order logarithmic term comes from the region L ≪ r ≪ a where ǫa ≪ h(r) ≪ a,
and the prefactor Cn can be calculated by simple approximations for h and L.]

Similarly, calculate the leading-order contribution to G from the thin gap. What
check does the reciprocal theorem provide on (part of) this calculation?

A uniform rigid sphere with buoyancy-adjusted weight F falls through viscous fluid
very close to a vertical wall. Apply your previous results to determine the leading-order
fall speed U and rotation rate Ω of the sphere.
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