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1 Spectral regularisation
You may use results from the lectures provided these are clearly stated.

Let A ∈ L(U ,V), where U ,V are Hilbert spaces.

a) Give the definition of a regularisation of A†. Give one example of a linear and one of
a nonlinear regularisation. Give the definition of a convergent regularisation.

b) Prove the following statement. Let {Rα}α>0 be a linear regularisation and
α : R>0 → R>0 an a priori parameter choice rule. Suppose that limδ→0 α(δ) = 0 and
limδ→0 δ‖Rα(δ)‖L(V ,U) = 0. Then (Rα, α) is a convergent regularisation.

c) Let A ∈ K(U ,V) be a compact operator with singular system {σj , xj , yj}j∈N. Asymp-
totic regularisation consists in choosing the regularised solution uα as uα = x

(

1
α

)

,
where x(t) solves the following initial value problem

{

x′(t) = −A∗(Ax(t)− f), t > 0,

x(0) = 0.

Derive the spectral representation of uα in terms of the singular system of A.

Hint: Expand x(t) in the basis of singular vectors of A. You may also use the fact that

the solution of the following initial value problem

{

y′(t) = ay(t) + b, t > 0,

y(0) = 0,

where a, b are constants, is given by y(t) = b
a
(eat − 1).
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2 Variational regularisation
You may use results from the lectures provided these are clearly stated.

Let U ,V be Banach spaces.

a) Define the weak and the weak-∗ convergences in a Banach space. What is the
relationship between the weak and the weak-∗ convergences in a reflexive Banach space?

b) What is the Radon-Riesz property? Prove that the norm in a Hilbert space has the
Radon-Riesz property.

c) Consider an inverse problem Au = f , where A ∈ L(U ,V), U ,V are Banach spaces and
f ∈ D(A†), where D(A†) is the domain of the Moore-Penrose inverse A†. Let fδ ∈ V be
such that ‖f − fδ‖V 6 δ and J : U → R be a regularisation functional. The following
regularisation method is referred to as the residual method

uδ ∈ argmin
u∈U : ‖Au−fδ‖V6δ

J (u).

Suppose that J (u) > 0 for all u, J is strongly l.s.c. and its sublevel sets {u ∈
U : J (u) 6 C} are strongly sequentially compact. Show that under these assumptions

uδ → u
†
J as δ → 0, where u

†
J is a J -minimising solution.

Hint: You may assume that under these assumptions a J -minimising solution exists

and the optimisation problem above has a minimiser.
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3 Total Variation
You may use results from the lectures provided these are clearly stated.

Let U = L1(Ω), where Ω ⊂ R
n is bounded.

a) Give the definition of Total Variation and prove that it is proper and convex. Is Total
Variation strictly convex? [Prove or give counter example.] Define the BV space. Is
Total Variation coercive on BV? [Prove or give counter example.]

b) Give the definition of an absolute one-homogeneous functional. Show that if J : U →
R>0 is absolute one-homogeneous and convex and p ∈ ∂J (u) then J (u) = 〈p, u〉.

c) Let Ω = [−1, 1] and 0 < R < 1. Find the Total Variation of uR : Ω → R defined as
follows

uR =

{

1, if |x| 6 R,

0 otherwise.

Hint: You may use the fact that the hat function

ωε(x) =







e
− ε

2

ε2−x2 if |x| < ε,

0 otherwise

is in C∞
0 ([−1, 1]) for any ε 6 1.
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4 Source Conditions and Convergence Rates
You may use results from the lectures provided these are clearly stated.

Suppose that U is a Hilbert space.

a) Give the definition of the generalised Bregman distance D
p
J (u, v) associated with a

convex functional J and a subgradient p ∈ ∂J (v). Show that if J is strictly convex,
then D

p
J (u, v) = 0 implies u = v. Show that in general Dp

J (u, v) = 0 does not imply
u = v. [Give counter example.]

b) State the source condition for a J -minimising solution u
†
J . Show that any u ∈ U

satisfying Au = f and the source condition is a J -minimising solution.

c) The following variational regularisation problem is called the exact penalisation model

min
u∈U

‖Au− f‖V + αJ (u),

where f ∈ R(A) is the exact data and J : U → R̄ is proper, convex, l.s.c., and absolute
one-homogeneous. Suppose that the source condition is satisfied at a J -minimising
solution u

†
J with the source element µ† and α < 1

‖µ†‖V
. Show that in this case each

minimisier uα is a J -minimising solution of Au = f and

D
p†

J (uα, u
†
J ) = 0,

where p† = A∗µ†.

END OF PAPER
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