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(a) (i) Give a statement of the hidden subgroup problem for a finite group G.

(ii) Let G be a finite abelian group and H a state space with orthonormal basis
{|g〉 : g ∈ G} labelled by the elements ofG. Define the shift operator U(h) for h ∈ G, acting
onH. Describe how a common eigenbasis for all the shift operators may be constructed and
identify their corresponding eigenvalues. You may use results from group representation
theory without proof but they should be clearly stated.

(iii) In the course of the standard quantum algorithm for the abelian hidden
subgroup problem for abelian group G with hidden subgroup K of size |K|, we obtain
a coset state of the form

|g0 +K〉 =
1

√

|K|

∑

k∈K

|g0 + k〉

where g0 ∈ G has been chosen uniformly at random. Show how the constructions in (ii)
can be used to provide a measurement, which when applied to |g0 +K〉, has an output
distribution that is independent of g0, and depends only on the hidden subgroup K.

(b) For any suitable set Y let f : ZN → Y be a surjective function which is periodic
with period r ∈ ZN and with f(0), f(1), . . . , f(r− 1) all being distinct. Let HY be a state
space with orthonormal basis labelled by the elements of Y , and let Ul for l ∈ ZN be the
operation on HY defined by Ul |f(x)〉 = |f(x+ l)〉 for all x ∈ ZN .
Consider the state |ψ〉 = 1√

N

∑

x∈ZN
|x〉 |f(x)〉 and let |ξ〉 be the result of applying the

quantum Fourier transform over ZN to the first register of |ψ〉. Show that |ξ〉 may be
expressed as

|ξ〉 =
1

√

|M |

∑

x∈M

|x〉 |ex〉

where the |ex〉’s are normalised common eigenvectors of all the operators Ul for l ∈ ZN ,
and M ⊆ ZN of size |M |, is a subset of ZN which should be determined. Hence determine
how the result of measuring the second register of |ξ〉 in the common eigenbasis of the Ul’s
depends on the period r.
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(a) Let H be a finite dimensional state space and let G ⊆ H be a linear subspace.
In terms of these, state and prove the Amplitude Amplification theorem.

(b) Let HK denote a state space of dimension K with orthonormal basis {|k〉 : k ∈
ZK}. For any h : ZN → ZM let Uh denote the unitary operation on HN ⊗HM defined by
Uh |x〉 |y〉 = |x〉 |y + h(x) modM〉 for all x ∈ ZN and y ∈ ZM .

(i) Let S on HK be defined by S |x〉 = |−x modK〉 for all x ∈ ZK . Show that S is
unitary.

(ii) For h as above let r be the function r(x) = −h(x) modM . Suppose we are given
a quantum oracle for the operation Uh. Show that Uh and Ur are inverse operations, and
that Ur may be implemented with a single use of Uh and other gates that are independent
of h.

Suppose now that we are given a quantum oracle Uf for f : ZN → ZN and it is
promised that f is a one-to-one function. We wish to find x ∈ ZN satisfying f(x)4 6 N .
Here for 0 6 f(x) < N , f(x)4 is computed in Z i.e. not reduced modN . Call such x’s
good, and all other x’s bad. We should succeed in finding a good x with probability at
least 0.9 asymptotically for all large N .

(iii) Let Ig be the operator defined by Ig |x〉 = − |x〉 if x is good and Ig |x〉 = |x〉 if
x is bad. Show that Ig can be implemented with two uses of Uf and other gates that are
independent of f . [Hint: it may be useful to incorporate the result of (ii) for a suitable
choice of h there.]

(iv) Hence or otherwise show that the quantum query complexity (for queries to
Uf ) of the task of finding a good x is at most O(N3/8).
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(a) Let X and Z denote the standard 1-qubit Pauli operators, and let Xj denote
the n-qubit operation of X acting on the jth qubit with the identity operation on all other
qubits (and similarly for Zj).

(i) Define the spectral norm ||A|| of any operator A. Find ||X1Z2||.

(ii) State the Lie-Trotter product formula.

(iii) Consider the following Hamiltonian on n qubits labelled as 0, 1, . . . , n− 1:

H =
n
∑

i=1

Xi−1 Zi

and let U = e−iH . For any given ǫ > 0, explain how an operation Ũ with ||U − Ũ || < ǫ
may be implemented by a poly(n) sized circuit of 2-qubit gates, and identify the degree
of the polynomial. You should state clearly any properties of the spectral norm that you
use (which may be used without proof).

(b) Let Bn denote the set of all n-bit strings. Consider the n-qubit operation A
defined by

A |x〉 = (−1)f(x) |x〉 for all x ∈ Bn

where f : Bn → B1 is a function which is quantum-computable in the following
sense: there is a circuit C of 1-qubit and 2-qubit gates that implements the operation
Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 for x ∈ Bn and y ∈ B1 (and ⊕ denotes addition mod 2).

(i) A is both unitary and Hermitian. Given an n-qubit register, introduce an extra
qubit labelled as qubit n+1 and write Ã = A⊗ In+1 where In+1 is the identity operation
on qubit n + 1. Show how Ã acting as a unitary operation on |x〉 |0〉n+1 for any x ∈ Bn,
may be implemented using only the gates of C, their inverses and a suitable Pauli gate.

(ii) Now view A as a Hermitian Hamiltonian. Using (i) or otherwise, show how
U = eiA may be implemented on an n-qubit register by a circuit of 1-qubit and 2-qubit
gates.
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(a) Consider the linear system of equations Ax = b with x, b ∈ C
N and A Hermitian.

Write n = logN . Suppose all eigenvalues of A lie in the interval [0, 1] and that each
eigenvalue has the form x/2n for an integer 0 6 x < 2n, so eigenvalues can be exactly
represented in n bits.

(i) State the further conditions on A and b that are needed for the Harrow-Hassidim-
Lloyd (HHL) quantum algorithm to apply to the linear system and run in time O(poly(n)),
to produce with success probability at least O(1/poly(n)), an n-qubit quantum state |ξ〉
corresponding to the solution vector x normalised.

(ii) Describe the steps of the HHL algorithm. You may assume that any use of
phase estimation or Hamiltonian simulation can be executed exactly and their actions
may be quoted without proof. You should also state clearly the actions of any operations
independent of A and b that are needed.

(b) The HHL algorithm uses a multi-qubit controlled operation W of the following
general form. For any n-bit string x let 0 6 θx 6 π/2 be a value that can be classically
efficiently computed given x. Then W , operating on an n-qubit control register and a
1-qubit target register, gives the following transformation for any n-bit string x:

|x〉 |0〉 −→ |x〉 (cos θx |0〉+ sin θx |1〉) .

Here the two registers comprise n qubits and one qubit respectively. Show how W can be
implemented as a circuit of 1-qubit and 2-qubit gates of size poly(n). You may ignore any
issues of precision, assuming that all needed quantities can be adequately represented in
O(n) bits.
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