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(i) What does it mean to say that a bipartite state ρAB is PPT? Prove that any bipartite
separable state is PPT.

(ii) Suppose σAB denotes the joint state of a qubit and a qutrit. Prove that if σAB is
PPT, then it is also separable. You should carefully state any known result that you
use in your proof.

(iii) Let W := ΨTB

− ∈ B(HA ⊗HB), where HA,HB ≃ C
2, Ψ− = |Ψ−〉〈Ψ−| with

|Ψ−〉 =
1√
2
(|01〉 − |10〉),

and TB denotes transposition with respect to the subsystem B.

Prove that W is an entanglement witness for the Bell state

|Φ+〉 =
1√
2
(|00〉 + |11〉).

[Hint: Use the fact that Tr(XY TB ) = Tr(XTBY ) for any X,Y ∈ B(HA ⊗HB)]

(iv) A quantum channel Λ : B(Cd) → B(Cd) is said to be an entanglement breaking (EB)
channel if (Λ ⊗ id)ρ is separable for all states ρ ∈ D(Cd ⊗ C

d). Prove that Λ is an
EB channel if and only if its Choi state is separable.

(v) A measure-and-prepare channel Λ : B(Cd) → B(Cd) is defined as

Λ(X) :=
∑

a

Tr(EaX)σa,

where {Ea}a is a POVM with Ea ∈ B(Cd) for each a, and σa ∈ D(Cd). Prove that
such a channel is entanglement breaking.

(vi) Consider the quantum channel Λ̃ : B(Cd) → B(Cd) defined as follows: for any
X ∈ B(Cd),

Λ̃(X) = d
∑

j

|aj〉〈aj |Tr(pjX|bj〉〈bj |), (1)

where |aj〉, |bj〉 ∈ Cd, and {pj}j is a probability distribution. By computing its Choi
state, establish that it is entanglement breaking.
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(i) Consider a sequence of i.i.d. random variables X1,X2, . . . ,Xn with common proba-
bility mass function p(x) with x ∈ J , where J is a finite alphabet.

(a) For a fixed ε ∈ (0, 1), when is a sequence x(n) := (x1, x2, . . . , xn) said to be
ε-typical? Does this definition agree with the intuitive notion of a typical
sequence? Justify your answer.

(b) Let T
(n)
ε denote the set of ε-typical sequences. It is known that for any δ > 0

and n large enough, the probability of the typical set, P (T
(n)
ε ) is at least (1−δ).

Establish an upper bound on the cardinality of the typical set in terms of the
Shannon entropy H(X) := −∑x∈J p(x) log p(x).

(ii) Consider a memoryless quantum information source characterized by {π,H}, with
π ∈ D(H), with dimH = d. Suppose on n uses of the source, the signal |Ψ(n)

k 〉 ∈ H⊗n

is emitted with probability p
(n)
k , for k ∈ {1, 2, . . . ,m}, and let ρ(n) denote the density

matrix associated with the ensemble {p(n)k , |Ψ(n)
k 〉}.

(a) Let the spectral decomposition of π be given by

π =
d
∑

i=1

qi|φi〉〈φi|.

By considering the spectral decomposition of ρ(n) and evaluating its von

Neumann entropy, show how one can define the ε-typical subspace T (n)
ε , for

any fixed ε ∈ (0, 1). For n large enough, state an upper bound on its dimension

and a lower bound on Tr(ρ(n)P
(n)
ε ), where P

(n)
ε denotes the projection operator

onto this subspace.

(b) Schumacher’s Theorem states that for R > S(π), where S(π) denotes the
von Neumann entropy of the state π, there exists a reliable compression-
decompression scheme of rate R. State precisely what is meant by reliable
in this context.

(iii) Consider a memoryless classical information source characterized by a random
variable X, taking values in J , where |J | = m. Suppose X takes the value x1 ∈ J

with probability (1 − q), for some small q ∈ (0, 1). Find an upper bound on the
classical data compression limit of this source.
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(i) Suppose Alice encodes classical information in n qubits which she sends to Bob
through a quantum channel. Find an upper bound on the maximum number of
bits of information that Bob can infer from the output of the channel by doing
measurements on it.

[Hint: Use the Holevo bound.]

(ii) Suppose Alice wants to send classical messages labelled by the elements of the set
M = {1, 2, . . . , |M|} to Bob via multiple uses of a memoryless quantum channel
Λ : D(HA) → D(HB), but she can only use product state inputs. Prove that if she
tries to send her messages at a rate

R > max
{px,ρx}

(

S(
∑

x

pxΛ(ρx))−
∑

x

pxS(Λ(ρx))

)

, (1)

then the maximum probability of error does not vanish asymptotically, i.e. as n→ ∞,
where n denotes the number of uses of Λ. Justify your steps carefully, clearly stating
any assumption that you make, or any other known result that you employ in your
proof.

(iii) A generalized measurement, characterized by the measurement operators {Mj}mj=1,
is done on a quantum system which is initially in a pure state ρ = |ψ〉〈ψ|. Suppose
0 6M1 6 I, and the outcome 1 has a high probability of occurrence, i.e.

Tr(M1ρM
†
1 ) > 1− ε

for some small ε ∈ (0, 1). Let ρ′ denote the post-measurement state if the outcome
1 occurs. Prove that if the outcome of the measurement is 1, then the initial state ρ
is not disturbed a lot, in the sense that

F (ρ, ρ′)2 > 1− ε, (2)

where F (ρ, ρ′) := ||√ρ√ρ′||1 denotes the fidelity between the states ρ and ρ′.
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(i) The trace distance D(ρ, σ) between two states ρ, σ ∈ D(H) is defined as D(ρ, σ) =
1
2 ||ρ− σ||1. Prove that

D(ρ, σ) = max
06M6I

Tr(M(ρ− σ)). (1)

(ii) To any POVM {Ea}ka=1, with Ea ∈ B(H), where H ≃ C
d, one can associate a

measurement map Φ defined as follows:

Φ(X) =
k
∑

a=1

Tr(EaX)|a〉〈a|, ∀ X ∈ B(H). (2)

Prove that Φ is a quantum operation.

(iii) Making use of the relation (1), prove that for all ρ, σ ∈ D(H), there exists a
measurement map Φ such that

D(ρ, σ) = D(Φ(ρ),Φ(σ)).

(iv) The so-called Pinsker’s inequality states that for probability distributions p, q ∈ R
d,

D(p||q) > 1

2 ln 2
||p − q||21, (3)

where ||p − q||1 :=
∑d

i=1 |pi − qi|, and D(p||q) denotes the classical relative entropy
(or Kullback-Leibler divergence). Use this relation to prove the quantum Pinsker
inequality: for any two states ρ, σ ∈ D(H),

D(ρ||σ) > 2

ln 2
D(ρ, σ)2, (4)

where D(ρ||σ) denotes the quantum relative entropy, and D(ρ, σ) is the trace
distance.

Part III, Paper 323 [TURN OVER]



6

5

(i) It is known that the quantum relative entropy is jointly convex, i.e.,

D(
∑

i

piρi||
∑

i

piσi) 6
∑

i

piD(ρi||σi), (1)

where {pi} denotes a probability distribution, and ρi, σi denote states.

Prove the Lindblad-Uhlmann monotonicity of the quantum relative entropy, i.e., for
any quantum operation Λ acting on D(H),

D(Λ(ρ)||Λ(σ)) 6 D(ρ||σ),

carefully stating any other properties of the quantum relative entropy that you use
in your proof.

[Hint: Use (1), and the following identity:

1

d2

d−1
∑

k,m=0

Wk,mAW
†
k,m = (TrA)

I

d
(2)

for any A ∈ B(Cd), where Wk,m := XkZm ∈ B(Cd), with k,m ∈ {0, 1, 2, . . . , d − 1},
are the d2 unitary Heisenberg-Weyl operators.]

(ii) Compute the Holevo capacity χ∗(Λdep) of a qubit depolarizing channel Λdep, which
acts on any state ρ ∈ D(C2) as follows:

Λdep(ρ) = pρ+ (1− p)
I

2
. (3)

It is known that
χ∗(Λdep ⊗ Λ̃) = χ∗(Λdep) + χ∗(Λ̃), (4)

for any other quantum channel Λ̃. Can the classical capacity of Λdep be increased by
using entangled inputs? Justify your answer.

(iii) Prove that the quantum relative entropy satisfies the following identity:

∑

j

pjD(ωj||ρ) =
∑

j

pjD(ωj||ω̄) +D(ω̄||ρ), (5)

where {pj} is a probability distribution, ρ, ωj ∈ D(H), and ω̄ :=
∑

j pjωj.

(iv) Using (5), prove that

min
ρ

∑

j

pjD(ωj||ρ) = I(X : B)σ, (6)

where
σXB =

∑

j

pj|j〉〈j| ⊗ ωj ∈ D(HX ⊗HB).
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