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(i) Consider a dust particle that is undergoing migration towards its host star of
mass M⋆ due to Poynting-Robertson drag causing its semimajor axis (a) and eccentricity
(e) to evolve as

(da/dt)pr = −Aa−1(2 + 3e2)(1− e2)−3/2,

(de/dt)pr = −(5/2)Aa−2e(1− e2)−1/2,

where A is a constant. Find expressions for (da/dt)pr and (de2/dt)pr keeping only terms
up to second order in eccentricity.

(ii) The particle encounters the (p + q) : p resonance of an interior coplanar planet
that is on a circular orbit around the star, where p and q are positive integers. This results
in an additional perturbation to the particle’s orbital elements of

(da/dt)res = −2(p + q)eqaC sinφ,

(de/dt)res = −qeq−1C sinφ,

where C is a constant and φ = (p + q)λ − pλp − q̟ is the resonant argument in which
λp and λ are the mean longitudes of the planet and particle respectively, and ̟ is the
particle’s longitude of pericentre. Show that the particle can only become trapped in the
resonance if e > emin, where emin should be determined assuming that emin ≪ 1.

(iii) Assuming that the particle does become trapped at time t = 0 with an
eccentricity e0, using the expressions from (i) show that the eccentricity continues to
evolve as

e =
√

B + [e20 −B] exp (−t/τ)],

where B and τ should be determined.

(iv) Determine the value of the resonant argument about which the particle’s orbit
will librate once its eccentricity has reached emax =

√
B.

(v) Describe how the resonant argument determines how far the planet is from the
particle when it reaches its pericentre.

(vi) Determine the rate of azimuthal motion of the particle at pericentre when
e = emax, and derive a condition on p and q for which this rate exceeds that of the planet.
You may assume that radiation pressure can be neglected when determining the location
of the resonance.

(vii) Sketch the orbit of the particle when e = emax for the 5 : 3 resonance in the
frame rotating with the planet, explaining your reasoning and showing the angle φ on this
plot.
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(i) Consider a planetesimal belt that contains a total mass Mtot within a torus at a
distance r from the star of radial width dr and vertical height 2Imaxr. The planetesimals
have a density ρ and diameters D in the range Dmin to Dmax with a single power law size
distribution in which n(D)dD is the number of bodies in the range D to D + dD where
n(D) = KD−α and α is a constant. For reasonable assumptions which should be stated,
determine K in terms of the aforementioned parameters.

(ii) The planetesimals’ dispersal threshold Q⋆
D = QbD

b, where Qb and b are
constants. The relative velocity of encounters is also size dependent so that vrel = vpD

p,
where vp and p are constants. Determine the minimum size of impacting planetesimals
that cause catastrophic collisions with planetesimals of size D assuming that gravitational
focussing can be ignored.

(iii) Repeat the calculation in (ii) for planetesimals that are large enough for
gravitational focussing to dominate, making further assumptions if necessary to simplify
the expression.

(iv) Ignoring gravitational focussing, derive an approximate expression for the rate
of catastrophic collisions as a function of planetesimal size, again stating any further
assumptions.

(v) Show that in steady state the rate of mass loss from bins that are logarithmically
spaced in planetesimal size is the same for all bins, stating the assumptions required for
this result to hold.

(vi) Hence, using the result in (iv), show that in steady state the size distribution
is given by α = (21 + b+ p)/(6 + b− 2p).
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(i) Consider a binary comprised of two planetesimals of massm1 andm2. In addition
to their mutual gravity, the two bodies experience different forces F1 and F2. Derive the
equation of relative motion

r̈+G(m1 +m2)r/r
3 = F2/m2 − F1/m1,

where r is the vector from m1 to m2 and r its magnitude.

(ii) Define a coordinate system (x̂, ŷ) with its origin at the centre of mass with x̂
pointing in the direction of m2 at time t = 0. The binary is on a circular orbit about its
centre of mass with a separation a and the motion of m2 at t = 0 is in the ŷ direction.
Each of the planetesimals experiences a drag force due to its motion relative to gas that
is moving at a velocity vg in the ŷ direction. The drag force is characterised by stopping
times of ts1 and ts2 that can be assumed to be constant (i.e., independent of relative
velocity). Determine the components of F2/m2 − F1/m1 in the (x̂, ŷ) directions.

(iii) Rewrite the result of (ii) using the (r̂, θ̂) coordinate system, where r̂ is in the
direction from m1 to m2, and θ̂ is orthogonal to this. Hence, or otherwise, derive the
rate at which the binary orbit shrinks da/dt. You may assume that for a 2-body orbit
v2 − 2µ/r = −µ/a.

(iv) Averaging over the binary orbit, show that the binary separation is given by
a = a0 exp (−t/τ), where a0 is its initial separation and τ should be determined.

(v) The centre of mass of the binary considered above is on a circular orbit around
a star of mass M⋆ ≫ (m1+m2) at a separation ab. The binary experiences drag due to its
motion relative to circumstellar gas that is on a circular orbit at a velocity (1−η)vk, where
η ≪ 1 and vk is the local Keplerian velocity. By considering the motion of the centre of
mass of the binary, and applying the previous results, show that dab/dt = −ab/τb, where
τb should be determined.

(vi) Show that τ/τb ≪ 1, where you may assume that m1 ≫ m2 and ts ∝ mk, where
0 < k < 1. Comment on the implications for the evolution of the binary.
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(i) Consider a planetary system comprised of 3 planets on circular orbits around a
star of mass M⋆. The planets’ masses are Mj ≪ M⋆, and their semimajor axes aj , for
j = 1, 2, 3, where a1 < a2 < a3. The orbital planes of the planets are defined by their
complex eccentricities yj = Ij exp (iΩj), where i =

√
−1. These orbital planes evolve due to

the planets’ mutual secular interactions so that ẏ = iBy, where the vector y = [y1, y2, y3],
and B is a 3x3 matrix. Derive the solution

yj =
3

∑

k=1

Ijk exp (i[λkt+ γk]),

explaining how Ijk, λk and γk are determined by the properties of B and initial conditions.

(ii) The matrix B has elements

Bjk = 0.25nj(Mk/M⋆)αjkᾱjkb
1
3/2(αjk),

Bjj = −
3

∑

k=1,k 6=j

Bjk,

where nj is the mean motion of planet j, αjk = ᾱjk = aj/ak for ak > aj but αjk = ak/aj
and ᾱjk = 1 otherwise, and b1

3/2(αjk) is a Laplace coefficient. Determine the eigenvalues
of B in terms of the 6 elements Bjk with j 6= k.

(iii) By definition bjs(α) = π−1
∫ 2π
0

cos (jx)[1 − 2α cos (x) + α2]−sdx. Show that to
first order in α, b1

3/2(α) ≈ 3α.

(iv) The planetary system architecture is such that the inner two planets are closely
separated and the outer planet is much further out, i.e., a3 ≫ a2. The masses of the
planets are all comparable. Determine the elements Bjk in terms of B12, α = a1/a2,
β = a1/a3, ratios of the planets’ angular momenta Li, and ratios of their masses. Hence
for the above architecture determine the relative magnitude of each element.

(v) Show that two of the eigenvalues of B have magnitudes of approximately
B12(1 + L1/L2) and B13[(L1/L2) + α−3/2]/(1 + L1/L2).

(vi) The two inner planets are initially coplanar, and the outer planet is on an orbit
inclined by ∆I with respect to that plane. Derive that the inclination of the outer planet
with respect to the invariable plane is initially

I3 = arctan [sin∆I/(A+ cos∆I)],

where A = L3/(L1 + L2).
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