



MAT3, MAMA, MAAS

**MATHEMATICAL TRIPOS**      **Part III**

---

Friday, 7 June, 2019 1:30 pm to 4:30 pm

---

**PAPER 312**

**ADVANCED COSMOLOGY**

*Attempt no more than **THREE** questions.*

*There are **FOUR** questions in total.*

*The questions carry equal weight.*

**STATIONERY REQUIREMENTS**

*Cover sheet*

*Treasury Tag*

*Script paper*

*Rough paper*

**SPECIAL REQUIREMENTS**

*None*

You may not start to read the questions  
printed on the subsequent pages until  
instructed to do so by the Invigilator.

1 (i) According to the in-in formalism, the leading-order correction to the expectation value of an operator  $Q$  is given by

$$\langle Q(\tau) \rangle = \Re \left\langle -2iQ^I(\tau) \int_{-\infty(1-i\varepsilon)}^{\tau} a(\tau') H_{\text{int}}^I(\tau') d\tau' \right\rangle, \quad (\dagger)$$

where  $a$  is the scale factor and  $\tau$  is the conformal time (defined by  $dt = a d\tau$ ). Describe the vacuum state for the in-in formalism and discuss what distinguishes the in-in formalism from the  $S$ -matrix in-out calculation. Splitting the Hamiltonian into a background part, the free quadratic part and the cubic interacting part, which term describes the time evolution of the interaction picture fields  $Q^I$  and  $H_{\text{int}}^I$ ?

(ii) Consider a scalar field  $\phi$ , minimally coupled to gravity, with a non-standard kinetic term parametrized by the function  $P(X, \phi)$  in the action

$$S = \int d^4x \sqrt{-g} \left[ \frac{1}{2}R + P(X, \phi) \right],$$

where  $R$  is the Ricci scalar and  $2X = -g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi$  is the kinetic term. The background equations of motion can be derived from a variation of the above action with respect to the metric and are given by the Friedmann equations relating the Hubble rate  $H$  to pressure  $\bar{p}$  and density  $\bar{\rho}$

$$3H^2 = \bar{\rho} = 2\bar{X}P_{,\bar{X}} - P, \quad \dot{H} = -\frac{1}{2}(\bar{\rho} + \bar{p}) = -\bar{X}P_{,\bar{X}}.$$

Here  $P_{,\bar{X}}$  is the derivative of  $P(X, \phi)$  with respect to  $X$  in the background. The corresponding slow-roll parameter is thus given by  $\epsilon = -\dot{H}/H^2 = \bar{X}P_{,\bar{X}}/H^2$ .

(ii,a) Show that the speed of sound is given by

$$c_s^2 = \frac{d\bar{p}}{d\bar{\rho}} = \frac{P_{,\bar{X}}}{P_{,\bar{X}} + 2XP_{,\bar{X}\bar{X}}}.$$

*Hint:* Rewrite the derivative in terms of  $d\bar{p}/d\bar{X}$  and  $d\bar{\rho}/d\bar{X}$ .

(ii,b) Perturb the scalar field  $\phi$  around a homogeneous and isotropic background as  $\phi(\mathbf{x}, t) = \bar{\phi}(t) + \delta\phi(\mathbf{x}, t)$ . For interesting levels of observable non-Gaussianity, scalar field perturbations have to dominate over metric perturbations. In the following we will thus continue to assume an unperturbed background  $\delta R = 0$  and  $g_{\mu\nu} = \text{diag}(-1, a^2, a^2, a^2)$ . Given these simplifications, show that we have for the kinetic term

$$X = \bar{X} + \delta X = -\frac{1}{2}g^{\mu\nu}\partial_\mu\phi\partial_\nu\phi = \frac{1}{2}\dot{\bar{\phi}}^2 + \dot{\bar{\phi}}\dot{\delta\phi} + \frac{1}{2}\dot{\delta\phi}^2 - \frac{1}{2a^2}(\partial_i\delta\phi)^2.$$

Express the inflaton fluctuations in the above expression in terms of the curvature perturbation  $\zeta = -(H/\dot{\bar{\phi}})\delta\phi$  ignoring the slow-roll suppressed derivatives of  $H$  and  $\dot{\bar{\phi}}$ , to obtain

$$\delta X = \frac{\bar{X}}{H^2} \left[ -2H\dot{\zeta} + \dot{\zeta}^2 - \frac{1}{a^2}(\partial_i\zeta)^2 \right].$$

[QUESTION CONTINUES ON THE NEXT PAGE]

Expand the function  $P(X, \phi)$  in the action to third order in  $\delta X$  as

$$P(X) = P(\bar{X}) + P_{,\bar{X}}\delta X + \frac{1}{2!}P_{,\bar{X}\bar{X}}\delta X^2 + \frac{1}{3!}P_{,\bar{X}\bar{X}\bar{X}}\delta X^3$$

and show that the cubic terms in the action can be written as

$$S_3 = \int d^4x \frac{a^3 \epsilon}{H} \frac{1 - c_s^2}{c_s^2} \left[ \frac{1}{a^2} \dot{\zeta} (\partial_i \zeta)^2 + \mathcal{A} \dot{\zeta}^3 \right],$$

where

$$\mathcal{A} = -1 - \frac{2}{3} \bar{X} \frac{P_{,\bar{X}\bar{X}\bar{X}}}{P_{,\bar{X}\bar{X}}}.$$

(ii,c) Performing the Legendre transformation from the Lagrange function, the Hamiltonian  $H_{\text{int}}^I$  is given by  $-L_{\text{int}}^I$ . In the following, we will consider the component of the action that is proportional to  $\dot{\zeta} (\partial_i \zeta)^2$ :

$$H_{\text{int}}^I = - \int d^3x \frac{a\epsilon}{H} \frac{1 - c_s^2}{c_s^2} \dot{\zeta} (\partial_i \zeta)^2, \quad (\star)$$

with slow-roll parameter  $\epsilon$  (which you may assume is effectively constant) and scale factor given by  $a = -1/(H\tau)$  with Hubble constant  $H$ . Here, in the interaction picture, the linear density perturbation  $\zeta$  is a Gaussian random field with two-point correlator,

$$\langle \zeta(\mathbf{k}) \zeta(\mathbf{k}') \rangle = (2\pi)^3 u_k u_k^* \delta^{(D)}(\mathbf{k} + \mathbf{k}'), \quad (\#)$$

where the mode functions  $u_k(\tau)$  and their conformal time derivatives are given by

$$u_k(\tau) = \frac{H}{\sqrt{4\epsilon c_s k^3}} (1 + ikc_s \tau) e^{-ikc_s \tau}, \quad \text{and} \quad u'_k(\tau) = \frac{H}{\sqrt{4\epsilon c_s k^3}} c_s^2 k^2 \tau e^{-ikc_s \tau}.$$

Use Wick's theorem, together with the power spectrum (#) and the in-in formalism expression (†), to show that the three-point correlator of  $\zeta$  for the interaction Hamiltonian (★) can be written in the following form

$$\begin{aligned} \langle \zeta(\mathbf{k}_1, 0) \zeta(\mathbf{k}_2, 0) \zeta(\mathbf{k}_3, 0) \rangle &= (2\pi)^3 \delta^{(D)}(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{1 - c_s^2}{c_s^3} \frac{H^4}{32\epsilon^2} \frac{1}{(k_1 k_2 k_3)^3} \\ &\times \Re \left\{ -i \int_{-\infty(1-i\varepsilon)}^0 d\tau e^{-iKc_s \tau} \left[ k_1^2 (k_1^2 - k_2^2 - k_3^2) (1 + ik_2 c_s \tau) (1 + ik_3 c_s \tau) + 2 \text{ cyc.} \right] \right\}, \end{aligned}$$

with  $K = k_1 + k_2 + k_3$ . You do not need to evaluate the time integral explicitly.

**2** Consider the perturbative expansion of the matter density field  $\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \dots$ , where in Fourier space the  $n$ -th order contribution is given by

$$\delta^{(n)}(\mathbf{k}, t) = D^n(t) \prod_{i=1}^n \left\{ \int \frac{d^3 q_i}{(2\pi)^3} \delta_{\text{lin}}(\mathbf{q}_i) \right\} F_n(\mathbf{q}_1, \dots, \mathbf{q}_n) (2\pi)^3 \delta^{(D)}(\mathbf{k} - \mathbf{q}_1 - \dots - \mathbf{q}_n).$$

Here,  $\delta_{\text{lin}}$  is the underlying Gaussian density field, with two-point correlator  $\langle \delta_{\text{lin}}(\mathbf{k}) \delta_{\text{lin}}(\mathbf{k}') \rangle = (2\pi)^3 \delta^{(D)}(\mathbf{k} + \mathbf{k}') P_{\text{lin}}(k)$ ,  $F_n$  are the gravitational coupling kernels (satisfying  $F_1(\mathbf{q}_1) \equiv 1$ ) and  $D(t)$  is the linear growth factor normalized to unity at the present time.

(i) Draw the Feynman diagrams for the two contributions to the one-loop power spectrum and write down the corresponding expressions in terms of the gravitational coupling kernels  $F_n$ . Argue why the odd 1-2 contribution has to vanish. Discuss the behaviour of the terms when the loop momentum  $q$  is much larger than the external momentum  $k$  and write down the appropriate leading-order counter term in the effective field theory of large-scale structure.

(ii) Calculate the leading-order skewness of the density field  $\langle \delta^3(\mathbf{x}) \rangle$  given that the symmetrized form of the second-order coupling kernel is

$$F_{2,s}(\mathbf{q}_1, \mathbf{q}_2) = \frac{5}{7} + \frac{1}{2} \mu \left( \frac{q_1}{q_2} + \frac{q_2}{q_1} \right) + \frac{2}{7} \mu^2,$$

where  $\mu = \hat{\mathbf{q}}_1 \cdot \hat{\mathbf{q}}_2$  is the cosine of the enclosed angle. Express the result in terms of the variance of the field  $\sigma^2 = \langle \delta^2(\mathbf{x}) \rangle$ .

(iii) Parameterize the skewness as  $\langle \delta^3 \rangle = S_3 \sigma^4$ . Assume that for weakly non-Gaussian fields, the one-point moment generating function for the density field  $\delta(\mathbf{x})$  at a single position  $\mathbf{x}$  can be written as

$$\mathcal{M}(J) = \langle \exp[\delta J] \rangle = \exp \left[ \frac{1}{2} J^2 \sigma^2 \right] \left( 1 + \frac{\sigma^4 S_3}{3!} J^3 \right). \quad (\star)$$

Given that the probability density function (PDF) is the inverse Laplace transformation of the moment generating function

$$\mathbb{P}(\delta) = \int_{-\infty}^{\infty} \frac{dJ}{2\pi i} \exp[-J\delta] \mathcal{M}(J), \quad (\dagger)$$

show that the probability density function of the weakly non-Gaussian field is given by

$$\mathbb{P}(\delta) = \left( 1 - \frac{S_3 \sigma^4}{3!} \frac{d^3}{d\delta^3} \right) \mathbb{P}_G(\delta),$$

where  $\mathbb{P}_G(\delta)$  is the Gaussian PDF

$$\mathbb{P}_G(\delta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[ -\frac{1}{2} \frac{\delta^2}{\sigma^2} \right].$$

Show that this result is equivalent to the Edgeworth expansion of the probability density function

$$\mathbb{P}(\delta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[ -\frac{1}{2} \frac{\delta^2}{\sigma^2} \right] \left( 1 + \frac{S_3(\delta^3 - 3\delta\sigma^2)}{3!\sigma^2} \right).$$

**[QUESTION CONTINUES ON THE NEXT PAGE]**

*Hint:* Replace the integration variable  $J = iy$  in Eq. (†), write  $J^3$  in Eq. (★) as a derivative of the exponential, and use the Gaussian integral

$$\int_{-\infty}^{\infty} dx e^{-ax^2+bx} = \sqrt{\frac{\pi}{a}} e^{b^2/(4a)}.$$

## 3

(i) The dimensionless temperature anisotropy of the CMB is  $\Theta(\eta, \mathbf{x}, \mathbf{e})$ , where  $\eta$  is conformal time,  $\mathbf{x}$  is comoving position and  $\mathbf{e}$  is the photon propagation direction. For scalar perturbations in the conformal Newtonian gauge, the Boltzmann equation for  $\Theta$  is

$$\begin{aligned}\dot{\Theta} + \mathbf{e} \cdot \nabla \Theta + \mathbf{e} \cdot \nabla \psi - \dot{\phi} &= \dot{\tau} \left( \Theta - \Theta_{00}/\sqrt{4\pi} \right) \\ &\quad - \frac{\dot{\tau}}{10} \sum_{|m| \leq 2} \left( \Theta_{2m} - \sqrt{6} E_{2m} \right) Y_{2m}(\mathbf{e}) - \dot{\tau} \mathbf{e} \cdot \mathbf{v}_b,\end{aligned}$$

where overdots denote partial differentiation with respect to conformal time,  $\phi$  and  $\psi$  are the metric potentials, and  $\tau$  is the optical depth to Thomson scattering. The scattering terms involve the spherical multipoles  $\Theta_{lm}$  of the temperature anisotropy, a polarization correction from the  $l = 2$  multipoles of the  $E$ -mode polarization,  $E_{2m}$ , and the baryon peculiar velocity  $\mathbf{v}_b$ . Explain why the spatial Fourier transform of the temperature anisotropy,  $\Theta(\eta, \mathbf{k}, \mathbf{e})$ , and  $E$ -mode polarization,  $E(\eta, \mathbf{k}, \mathbf{e})$ , is axisymmetric about the wavevector  $\mathbf{k}$ .

Expanding in Legendre polynomials as

$$\Theta(\eta, \mathbf{k}, \mathbf{e}) = \sum_{l \geq 0} (-i)^l \Theta_l(\eta, \mathbf{k}) P_l(\hat{\mathbf{k}} \cdot \mathbf{e}),$$

and similarly for  $E(\eta, \mathbf{k}, \mathbf{e})$ , derive the Boltzmann hierarchy

$$\begin{aligned}\dot{\Theta}_l + k \left( \frac{l+1}{2l+3} \Theta_{l+1} - \frac{l}{2l-1} \Theta_{l-1} \right) &= -\dot{\tau} \left[ (\delta_{l0} - 1) \Theta_l - \delta_{l1} v_b + \frac{1}{10} \delta_{l2} (\Theta_2 - \sqrt{6} E_2) \right] \\ &\quad + \delta_{l0} \dot{\phi} + \delta_{l1} k \psi. \quad (*)\end{aligned}$$

Here, the Fourier transform of the baryon velocity is  $\mathbf{v}_b = i\hat{\mathbf{k}}v_b$  and  $\hat{\mathbf{k}} = \mathbf{k}/|\mathbf{k}|$ .

[You may wish to use  $(2l+1)\mu P_l(\mu) = (l+1)P_{l+1}(\mu) + lP_{l-1}(\mu)$ .]

(ii) Consider scales small enough that the effects of cosmic expansion and gravity can be ignored. Write down the  $l = 0$  and  $l = 1$  moments of the Boltzmann hierarchy (\*) in this limit and give physical interpretations of these equations.

Given that the bulk velocity of the CMB is  $\mathbf{v}_\gamma(\eta, \mathbf{k}) = i\hat{\mathbf{k}}v_\gamma(\eta, \mathbf{k})$ , with  $v_\gamma = -\Theta_1$ , by considering the exchange of momentum between the baryons and CMB show that

$$\dot{v}_b \approx -\frac{\dot{\tau}}{R} (v_\gamma - v_b),$$

where you should specify  $R$  in terms of the (unperturbed) energy densities of the CMB and baryons.

[You may assume that the Euler equation for a non-interacting, pressure-free fluid is  $\dot{v} + \frac{\dot{a}}{a}v + k\psi = 0$ .]

[QUESTION CONTINUES ON THE NEXT PAGE]

(iii) Explain briefly what is meant by the tight-coupling approximation.

By considering the slip velocity  $v_\gamma - v_b$ , or otherwise, show that, to first order in  $k|\dot{\tau}|^{-1}$ ,

$$(1+R)\dot{\Theta}_1 + \frac{2}{5}k\Theta_2 - k\Theta_0 \approx -\frac{R^2}{1+R}k\dot{\tau}^{-1}\dot{\Theta}_0.$$

Using the  $l = 2$  moment of (\*), and the equivalent for the  $E$ -mode polarization,

$$\dot{E}_l + k \left( \frac{\sqrt{(l+1)^2 - 4}}{2l+3} E_{l+1} - \frac{\sqrt{l^2 - 4}}{2l-1} E_{l-1} \right) = \dot{\tau} \left[ E_l - \delta_{l2} \frac{3}{5} \left( E_2 - \frac{1}{\sqrt{6}} \Theta_2 \right) \right],$$

show further that  $\Theta_2 \approx -\frac{8}{9}k\dot{\tau}^{-1}\Theta_1$ .

Hence show that  $\Theta_0$  satisfies the oscillator equation

$$\ddot{\Theta}_0 + \frac{k^2|\dot{\tau}^{-1}|}{3(1+R)} \left( \frac{R^2}{1+R} + \frac{16}{15} \right) \dot{\Theta}_0 + \frac{k^2}{3(1+R)} \Theta_0 \approx 0.$$

Comment, briefly, on the observational implications of the damping term in this equation.

**4** Consider the dynamics of freely-propagating massless neutrinos in a spatially-flat universe with small tensor perturbations (gravitational waves). The line element is

$$ds^2 = a^2(\eta) [-d\eta^2 + (\delta_{ij} + h_{ij}) dx^i dx^j] ,$$

where  $a(\eta)$  is the scale factor at conformal time  $\eta$ . The metric perturbation  $h_{ij}$  is symmetric and trace-free, and has vanishing divergence. Throughout this question you should work to first order in the perturbation  $h_{ij}$ .

(i) Let  $\epsilon = aE$  be the comoving energy of a neutrino measured by an observer at constant  $x^i$ , and  $\mathbf{e}$  be the propagation direction defined relative to an orthonormal frame of vectors (which would be aligned with the coordinate directions if  $h_{ij}$  were vanishing). Write down the neutrino stress-energy tensor in terms of the one-particle distribution function  $f(\eta, \mathbf{x}, \epsilon, \mathbf{e})$  and the neutrino 4-momentum.

Writing  $f$  as the sum of a background part and a perturbation,

$$f(\eta, \mathbf{x}, \epsilon, \mathbf{e}) = \bar{f}(\epsilon) - \Theta(\eta, \mathbf{x}, \mathbf{e}) \frac{d\bar{f}}{d\ln\epsilon} ,$$

show that the orthonormal-frame components of the anisotropic stress are

$$\Pi^{\hat{i}\hat{j}}(\eta, \mathbf{x}) = -4\bar{\rho}_\nu \int \frac{d\mathbf{e}}{4\pi} \Theta(\eta, \mathbf{x}, \mathbf{e}) \left( e^{\hat{i}} e^{\hat{j}} - \frac{1}{3} \delta^{\hat{i}\hat{j}} \right) ,$$

where  $\bar{\rho}_\nu$  is the (unperturbed) neutrino energy density.

(ii) Given that the comoving energy of a photon evolves as

$$\frac{d\ln\epsilon}{d\eta} = -\frac{1}{2} \dot{h}_{ij} e^{\hat{i}} e^{\hat{j}} ,$$

where overdots denote partial differentiation with respect to  $\eta$ , derive the collisionless Boltzmann equation for  $\Theta(\eta, \mathbf{x}, \mathbf{e})$ .

Assuming that  $\Theta = 0$  at  $\eta = 0$ , show that

$$\Theta(\eta, \mathbf{x}, \mathbf{e}) = -\frac{1}{2} \int_0^\eta \dot{h}_{ij}(\eta', \mathbf{x} - \chi' \mathbf{e}) e^{\hat{i}} e^{\hat{j}} d\eta' , \quad (*)$$

where  $\chi' \equiv \eta - \eta'$ .

(iii) Anisotropic stress is sourced by the quadrupole ( $l = 2$ ) part of  $\Theta$ . For the case of a helicity  $\pm 2$  plane wave with wavevector  $\mathbf{k} = k\hat{\mathbf{z}}$  along the  $z$ -axis, for which the metric perturbation is

$$h_{ij}(\eta, \mathbf{x}) = \frac{1}{\sqrt{2}} m_{ij}^{(\pm 2)} h^{(\pm 2)}(\eta, k\hat{\mathbf{z}}) e^{i\mathbf{k}\cdot\mathbf{x}} ,$$

with  $m_{ij}^{(\pm 2)} = \frac{1}{2} (\delta_{i1} \pm i\delta_{i2}) (\delta_{j1} \pm i\delta_{j2})$ , show from  $(*)$  that the quadrupole contribution to  $\Theta(\eta, \mathbf{x}, \mathbf{e})$  is

$$\Theta(\eta, \mathbf{x}) \supset -\frac{15}{2\sqrt{2}} \left( m_{ij}^{(\pm 2)} e^{\hat{i}} e^{\hat{j}} \right) e^{i\mathbf{k}\cdot\mathbf{x}} \int_0^\eta \dot{h}^{(\pm 2)}(\eta', k\hat{\mathbf{z}}) \frac{j_2(k\chi')}{(k\chi')^2} d\eta' .$$

[QUESTION CONTINUES ON THE NEXT PAGE]

[You may wish to use  $Y_{2\pm 2}(\theta, \phi) = \frac{1}{4}\sqrt{\frac{15}{2\pi}} \sin^2 \theta e^{\pm 2i\phi}$  and the integral

$$\frac{1}{16} \int_{-1}^1 (1 - \mu^2)^2 e^{-ix\mu} d\mu = \frac{j_2(x)}{x^2}.$$

Hence show that the neutrino anisotropic stress is

$$\Pi^{i\hat{j}}(\eta, \mathbf{x}) = 2\sqrt{2}\bar{\rho}_\nu e^{i\mathbf{k}\cdot\mathbf{x}} m^{(\pm 2)ij} \int_0^\eta \dot{h}^{(\pm 2)}(\eta', k\hat{\mathbf{z}}) \frac{j_2(k\chi')}{(k\chi')^2} d\eta',$$

where, numerically,  $m^{(\pm 2)ij} = m_{ij}^{(\pm 2)}$ .

(iv) The metric perturbation  $h_{ij}$  evolves as

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} - \nabla^2 h_{ij} = -16\pi G a^2 \Pi_{ij},$$

where, at linear order, the coordinate components of the anisotropic stress  $\Pi_{ij}$  are equal to the orthonormal-frame components  $\Pi^{i\hat{j}}$ . Assuming that neutrinos are the only source of anisotropic stress, show that

$$\begin{aligned} \ddot{h}^{(\pm 2)}(\eta, k\hat{\mathbf{z}}) + 2\frac{\dot{a}}{a}\dot{h}^{(\pm 2)}(\eta, k\hat{\mathbf{z}}) + k^2 h^{(\pm 2)}(\eta, k\hat{\mathbf{z}}) = \\ - 24 \left(\frac{\dot{a}}{a}\right)^2 \frac{\bar{\rho}_\nu}{\bar{\rho}_{\text{tot}}} \int_0^\eta \dot{h}^{(\pm 2)}(\eta', k\hat{\mathbf{z}}) \frac{j_2(k\chi')}{(k\chi')^2} d\eta', \end{aligned}$$

where  $\bar{\rho}_{\text{tot}}$  is the unperturbed total energy density.

What do you expect the qualitative effect of the neutrino anisotropic stress to be on the evolution of tensor perturbations?

**END OF PAPER**