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1 (i) According to the in-in formalism, the leading-order correction to the expectation
value of an operator Q is given by

〈Q(τ)〉 = ℜ
〈

−2iQI(τ)

∫ τ

−∞(1−iε)
a(τ ′)HI

int(τ
′) dτ ′

〉

, (†)

where a is the scale factor and τ is the conformal time (defined by dt = adτ). Describe the
vacuum state for the in-in formalism and discuss what distinguishes the in-in formalism
from the S-matrix in-out calculation. Splitting the Hamiltonian into a background part,
the free quadratic part and the cubic interacting part, which term describes the time
evolution of the interaction picture fields QI and HI

int?

(ii) Consider a scalar field φ, minimally coupled to gravity, with a non-standard
kinetic term parametrized by the function P (X,φ) in the action

S =

∫

d4x
√−g

[

1

2
R+ P (X,φ)

]

,

where R is the Ricci scalar and 2X = −gµν∂µφ∂νφ is the kinetic term. The background
equations of motion can be derived from a variation of the above action with respect to the
metric and are given by the Friedmann equations relating the Hubble rate H to pressure
p̄ and density ρ̄

3H2 = ρ̄ = 2X̄P,X̄ − P , Ḣ = −1

2
(ρ̄+ p̄) = −X̄P,X̄ .

Here P,X̄ is the derivative of P (X,φ) with respect to X in the background. The

corresponding slow-roll parameter is thus given by ǫ = −Ḣ/H2 = X̄P,X̄/H
2.

(ii,a) Show that the speed of sound is given by

c2s =
dp̄

dρ̄
=

P,X̄

P,X̄ + 2XP,X̄X̄

.

Hint: Rewrite the derivative in terms of dp̄/dX̄ and dρ̄/dX̄ .

(ii,b) Perturb the scalar field φ around a homogeneous and isotropic background as
φ(x, t) = φ̄(t) + δφ(x, t). For interesting levels of observable non-Gaussianity, scalar field
perturbations have to dominate over metric perturbations. In the following we will thus
continue to assume an unperturbed background δR = 0 and gµν = diag(−1, a2, a2, a2).
Given these simplifications, show that we have for the kinetic term

X = X̄ + δX = −1

2
gµν∂µφ∂νφ =

1

2
˙̄φ2 + ˙̄φ ˙δφ +

1

2
˙δφ
2 − 1

2a2
(∂iδφ)

2 .

Express the inflaton fluctuations in the above expression in terms of the curvature

perturbation ζ = −(H/ ˙̄φ)δφ ignoring the slow-roll suppressed derivatives of H and ˙̄φ,
to obtain

δX =
X̄

H2

[

−2Hζ̇ + ζ̇2 − 1

a2
(∂iζ)

2

]

.

[QUESTION CONTINUES ON THE NEXT PAGE]
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Expand the function P (X,φ) in the action to third order in δX as

P (X) = P (X̄) + P,X̄δX +
1

2!
P,X̄X̄δX

2 +
1

3!
P,X̄X̄X̄δX

3

and show that the cubic terms in the action can be written as

S3 =

∫

d4x
a3ǫ

H

1− c2s
c2s

[

1

a2
ζ̇(∂iζ)

2 +Aζ̇3
]

,

where

A = −1− 2

3
X̄
P,X̄X̄X̄

P,X̄X̄

.

(ii,c) Performing the Legendre transformation from the Lagrange function, the
Hamiltonian HI

int is given by −LI
int. In the following, we will consider the component

of the action that is proportional to ζ̇(∂iζ)
2:

HI
int = −

∫

d3x
aǫ

H

1− c2s
c2s

ζ̇(∂iζ)
2 , (⋆)

with slow-roll parameter ǫ (which you may assume is effectively constant) and scale factor
given by a = −1/(Hτ) with Hubble constant H. Here, in the interaction picture, the
linear density perturbation ζ is a Gaussian random field with two-point correlator,

〈

ζ(k)ζ(k′)
〉

= (2π)3uku
∗
kδ

(D)(k + k′) , (#)

where the mode functions uk(τ) and their conformal time derivatives are given by

uk(τ) =
H√
4ǫcsk3

(1 + ikcsτ) e
−ikcsτ , and u′k(τ) =

H√
4ǫcsk3

c2sk
2τe−ikcsτ .

Use Wick’s theorem, together with the power spectrum (#) and the in-in formalism
expression (†), to show that the three-point correlator of ζ for the interaction Hamiltonian
(⋆) can be written in the following form

〈

ζ(k1, 0)ζ(k2, 0)ζ(k3, 0)
〉

= (2π)3δ(D) (k1 + k2 + k3)
1− c2s
c3s

H4

32ǫ2
1

(k1k2k3)3

×ℜ
{

−i

∫ 0

−∞(1−iε)
dτ e−iKcsτ

[

k21(k
2
1 − k22 − k23) (1 + ik2csτ) (1 + ik3csτ) + 2 cyc.

]

}

,

with K = k1 + k2 + k3. You do not need to evaluate the time integral explicitly.
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2 Consider the perturbative expansion of the matter density field δ = δ(1) + δ(2) +
δ(3) + · · · , where in Fourier space the n-th order contribution is given by

δ(n)(k, t) = Dn(t)
n
∏

i=1

{
∫

d3qn
(2π)3

δlin(qi)

}

Fn(q1, . . . , qn)(2π)
3δ(D)(k − q1 − · · · − qn) .

Here, δlin is the underlying Gaussian density field, with two-point correlator 〈δlin(k)δlin(k′)〉 =
(2π)3δ(D)(k+ k′)Plin(k), Fn are the gravitational coupling kernels (satisfying F1(q1) ≡ 1)
and D(t) is the linear growth factor normalized to unity at the present time.

(i) Draw the Feynman diagrams for the two contributions to the one-loop power
spectrum and write down the corresponding expressions in terms of the gravitational
coupling kernels Fn. Argue why the odd 1-2 contribution has to vanish. Discuss the
behaviour of the terms when the loop momentum q is much larger than the external
momentum k and write down the appropriate leading-order counter term in the effective
field theory of large-scale structure.

(ii) Calculate the leading-order skewness of the density field
〈

δ3(x)
〉

given that the
symmetrized form of the second-order coupling kernel is

F2,s(q1, q2) =
5

7
+

1

2
µ

(

q1
q2

+
q2
q1

)

+
2

7
µ2 ,

where µ = q̂1 · q̂2 is the cosine of the enclosed angle. Express the result in terms of the
variance of the field σ2 =

〈

δ2(x)
〉

.

(iii) Parameterize the skewness as
〈

δ3
〉

= S3σ
4. Assume that for weakly non-

Gaussian fields, the one-point moment generating function for the density field δ(x) at a
single position x can be written as

M(J) = 〈exp [δJ ]〉 = exp

[

1

2
J2σ2

](

1 +
σ4S3
3!

J3

)

. (⋆)

Given that the probability density function (PDF) is the inverse Laplace transformation
of the moment generating function

P(δ) =

∫ i∞

−i∞

dJ

2πi
exp [−Jδ]M(J) , (†)

show that the probability density function of the weakly non-Gaussian field is given by

P(δ) =

(

1− S3σ
4

3!

d3

dδ3

)

PG(δ) ,

where PG(δ) is the Gaussian PDF

PG(δ) =
1√
2πσ2

exp

[

−1

2

δ2

σ2

]

.

Show that this result is equivalent to the Edgeworth expansion of the probability density
function

P(δ) =
1√
2πσ2

exp

[

−1

2

δ2

σ2

](

1 +
S3(δ

3 − 3δσ2)

3!σ2

)

.

[QUESTION CONTINUES ON THE NEXT PAGE]
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Hint: Replace the integration variable J = iy in Eq. (†), write J3 in Eq. (⋆) as a derivative
of the exponential, and use the Gaussian integral

∫ ∞

−∞
dx e−ax2+bx =

√

π

a
eb

2/(4a) .
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3

(i) The dimensionless temperature anisotropy of the CMB is Θ(η,x, e), where η is
conformal time, x is comoving position and e is the photon propagation direction. For
scalar perturbations in the conformal Newtonian gauge, the Boltzmann equation for Θ is

Θ̇ + e ·∇Θ+ e ·∇ψ − φ̇ = τ̇
(

Θ−Θ00/
√
4π
)

− τ̇

10

∑

|m|62

(

Θ2m −
√
6E2m

)

Y2m(e)− τ̇e · vb ,

where overdots denote partial differentiation with respect to conformal time, φ and ψ are
the metric potentials, and τ is the optical depth to Thomson scattering. The scattering
terms involve the spherical multipoles Θlm of the temperature anisotropy, a polarization
correction from the l = 2 multipoles of the E-mode polarization, E2m, and the baryon
peculiar velocity vb. Explain why the spatial Fourier transform of the temperature
anisotropy, Θ(η,k, e), and E-mode polarization, E(η,k, e), is axisymmetric about the
wavevector k.

Expanding in Legendre polynomials as

Θ(η,k, e) =
∑

l>0

(−i)lΘl(η,k)Pl(k̂ · e) ,

and similarly for E(η,k, e), derive the Boltzmann hierarchy

Θ̇l + k

(

l + 1

2l + 3
Θl+1 −

l

2l − 1
Θl−1

)

= −τ̇
[

(δl0 − 1)Θl − δl1vb +
1

10
δl2

(

Θ2 −
√
6E2

)

]

+ δl0φ̇+ δl1kψ . (∗)

Here, the Fourier transform of the baryon velocity is vb = ik̂vb and k̂ = k/|k|.
[You may wish to use (2l + 1)µPl(µ) = (l + 1)Pl+1(µ) + lPl−1(µ).]

(ii) Consider scales small enough that the effects of cosmic expansion and gravity can be
ignored. Write down the l = 0 and l = 1 moments of the Boltzmann hierarchy (∗) in this
limit and give physical interpretations of these equations.

Given that the bulk velocity of the CMB is vγ(η,k) = ik̂vγ(η,k), with vγ = −Θ1,
by considering the exchange of momentum between the baryons and CMB show that

v̇b ≈ − τ̇

R
(vγ − vb) ,

where you should specify R in terms of the (unperturbed) energy densities of the CMB
and baryons.

[You may assume that the Euler equation for a non-interacting, pressure-free fluid is

v̇ + ȧ
av + kψ = 0.]

[QUESTION CONTINUES ON THE NEXT PAGE]
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(iii) Explain briefly what is meant by the tight-coupling approximation.

By considering the slip velocity vγ − vb, or otherwise, show that, to first order in
k|τ̇ |−1,

(1 +R)Θ̇1 +
2

5
kΘ2 − kΘ0 ≈ − R2

1 +R
kτ̇−1Θ̇0 .

Using the l = 2 moment of (∗), and the equivalent for the E-mode polarization,

Ėl + k

(

√

(l + 1)2 − 4

2l + 3
El+1 −

√
l2 − 4

2l − 1
El−1

)

= τ̇

[

El − δl2
3

5

(

E2 −
1√
6
Θ2

)]

,

show further that Θ2 ≈ −8
9kτ̇

−1Θ1.

Hence show that Θ0 satisfies the oscillator equation

Θ̈0 +
k2|τ̇−1|
3(1 +R)

(

R2

1 +R
+

16

15

)

Θ̇0 +
k2

3(1 +R)
Θ0 ≈ 0 .

Comment, briefly, on the observational implications of the damping term in this
equation.
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4 Consider the dynamics of freely-propagating massless neutrinos in a spatially-flat
universe with small tensor perturbations (gravitational waves). The line element is

ds2 = a2(η)
[

−dη2 + (δij + hij) dx
idxj

]

,

where a(η) is the scale factor at conformal time η. The metric perturbation hij is
symmetric and trace-free, and has vanishing divergence. Throughout this question you
should work to first order in the perturbation hij .

(i) Let ǫ = aE be the comoving energy of a neutrino measured by an observer at constant
xi, and e be the propagation direction defined relative to an orthonormal frame of vectors
(which would be aligned with the coordinate directions if hij were vanishing). Write
down the neutrino stress–energy tensor in terms of the one-particle distribution function
f(η,x, ǫ, e) and the neutrino 4-momentum.

Writing f as the sum of a background part and a perturbation,

f(η,x, ǫ, e) = f̄(ǫ)−Θ(η,x, e)
df̄

d ln ǫ
,

show that the orthonormal-frame components of the anisotropic stress are

Πı̂̂(η,x) = −4ρ̄ν

∫

de

4π
Θ(η,x, e)

(

eı̂e̂ − 1

3
δı̂̂
)

,

where ρ̄ν is the (unperturbed) neutrino energy density.

(ii) Given that the comoving energy of a photon evolves as

d ln ǫ

dη
= −1

2
ḣije

ı̂e̂ ,

where overdots denote partial differentiation with respect to η, derive the collisionless
Boltzmann equation for Θ(η,x, e).

Assuming that Θ = 0 at η = 0, show that

Θ(η,x, e) = −1

2

∫ η

0
ḣij(η

′,x− χ′e)eı̂e̂ dη′ , (∗)

where χ′ ≡ η − η′.

(iii) Anisotropic stress is sourced by the quadrupole (l = 2) part of Θ. For the case of
a helicity ±2 plane wave with wavevector k = kẑ along the z-axis, for which the metric
perturbation is

hij(η,x) =
1√
2
m

(±2)
ij h(±2)(η, kẑ)eik·x ,

with m
(±2)
ij = 1

2 (δi1 ± iδi2) (δj1 ± iδj2), show from (∗) that the quadrupole contribution to
Θ(η,x, e) is

Θ(η,x) ⊃ − 15

2
√
2

(

m
(±2)
ij eı̂e̂

)

eik·x
∫ η

0
ḣ(±2)(η′, kẑ)

j2(kχ
′)

(kχ′)2
dη′ .

[QUESTION CONTINUES ON THE NEXT PAGE]
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[You may wish to use Y2±2(θ, φ) =
1
4

√

15
2π sin2 θe±2iφ and the integral

1

16

∫ 1

−1

(

1− µ2
)2
e−ixµ dµ =

j2(x)

x2
.

]

Hence show that the neutrino anisotropic stress is

Πı̂̂(η,x) = 2
√
2ρ̄νe

ik·xm(±2) ij

∫ η

0
ḣ(±2)(η′, kẑ)

j2(kχ
′)

(kχ′)2
dη′ ,

where, numerically, m(±2) ij = m
(±2)
ij .

(iv) The metric perturbation hij evolves as

ḧij + 2
ȧ

a
ḣij −∇

2hij = −16πGa2Πij ,

where, at linear order, the coordinate components of the anisotropic stress Πij are equal
to the orthonormal-frame components Πı̂̂. Assuming that neutrinos are the only source
of anisotropic stress, show that

ḧ(±2)(η, kẑ) + 2
ȧ

a
ḣ(±2)(η, kẑ) + k2h(±2)(η, kẑ) =

− 24

(

ȧ

a

)2 ρ̄ν
ρ̄tot

∫ η

0
ḣ(±2)(η′, kẑ)

j2(kχ
′)

(kχ′)2
dη′ ,

where ρ̄tot is the unperturbed total energy density.

What do you expect the qualitative effect of the neutrino anisotropic stress to be
on the evolution of tensor perturbations?

END OF PAPER
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