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(a) For an arbitrary spacetime, write down the form of the energy-momentum tensor
Tµν for a perfect fluid in any reference frame. Besides the spacetime metric, how many
functions of spacetime does one need to specify in order to completely determine Tµν(x)?
Write down the equations that determine the evolution of Tµν .

(b)Write down the metric of an open, closed and flat FLRW spacetime, in any coordinates
you like. What is the volume of the spatial hypersurface defined by constant cosmological
time t in each of the three cases? Write down explicitly the evolution equations for Tµν in
a spatially flat FLRW spacetime.

(c) Assume that the universe is flat. Write down an integral expression for the age of
the universe as function of today’s fractional energy densities Ωi(t0), with i being non-
relativistic matter (a.k.a. “dust”), radiation and a cosmological constant where t0 is
today’s cosmological time. Then, assuming that there is only matter, compute the age of
the universe in giga years, using today’s value of the Hubble parameter H0.

(d) Recall the definition of the Hubble slow-roll parameter

ǫ ≡ − Ḣ

H2
. (1)

What values of ǫ correspond to accelerated expansion and accelerated contraction, respec-
tively? Consider a real canonical scalar field φ with a potential of the form V = λφp for
some positive p. For what values of φ are the potential slow-roll parameters ǫV and ηV
smaller than one? Let φ∗ be such that

ǫV (φ∗), ηV (φ∗) ≪ 1 . (2)

Compute ǫ(φ∗, φ̇∗) assuming φ̇∗ = 2
√
λφ

p/2
∗ . Is the expansion of the universe accelerated

or decelerated for these values?
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(a) Using dimensional analysis, determine the exponents αa in

ρrel = g
π2

30
Tα1λ , ρnr = g

(

mT

2π

)α2

e(µ−m)/T

(

m+
3

2
T

)

, (1)

nrel = g
ζ(3)

π2
Tα3 λ̃ , srel = g

2π2

45
Tα4λ , (2)

nnr = g

(

mT

2π

)α5

e(µ−m)/T , pnr = g

(

mT

2π

)α6

e(µ−m)/T T , (3)

where λ = {1, 7/8}, λ̃ = {1, 3/4} for bosons and fermions respectively, ζ(3) ≃ 1.2, T is
the temperature, g is the number of degenerate states, µ is the chemical potential, m is
the mass, n is the number density, ρ the energy density, p the pressure, s the entropy
density and the labels “rel” and “nr” indicate relativistic and non-relativistic particles
respectively. In the following the labels {e, p, n, b, γ} refer to electrons, protons, neutrons,
baryons and photons, respectively.

(b) Write down the main reaction that keeps electrons and positrons in chemical equilib-
rium around T ∼ 1 MeV. Compute ne/nγ as function of T for T < me assuming chemical
equilibrium and that all chemical potentials are negligible.

(c) Using the Helium abundance today compute np/nb [Hint: You may approximate

mHe ≃ 4mH , but do not neglect any term of order nn/np]. Then, using the baryon-
to-photon number ratio today nb/nγ and the observed charge neutrality, estimate ne/nγ .

(d) Using the above results, determine before what temperature the chemical equilibrium
between electron and positron must break down [Hint: To find a numerical solution for the

resulting transcendental equation, take the logarithm of the whole expression and neglect

all numerical factors inside the log except for 10−10. Recall log 10 ≃ 2.3]
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At late times in the universe well after matter-radiation equality (and assuming
K = 0 throughout), the gravitational potential Φ is given by the Poisson equation

∇2Φ = 4πGa2ρ̄m∆m (1)

in terms of the comoving gauge density contrast ∆m, the matter background density ρ̄m,
and the scale factor a. The Einstein equation for potential evolution is

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 0, (2)

where primes indicate derivatives with respect to conformal time τ and H is the conformal
Hubble rate. If required, you may use without proof that, from the Friedmann equations,
H′ −H2 = −4πGa2ρ̄m.

(a) From the above equations, explain why Φ ∝ ∆m/a and hence show that the evolution
equation for ∆m, rewritten in terms of cosmological time t, is given by:

∆̈m + 2H∆̇m − 4πGρ̄m∆m = 0, (3)

where dots indicate derivatives with respect to t.

(b) Show that this evolution equation implies that during matter domination the density
contrast grows as ∆m ∝ a.

(c) Explain briefly why increasing the dark energy density ρ̄Λ (assuming an equation of
state w = −1 and no changes to other energy densities) reduces the growth of structure.
From the evolution equation above, deduce the evolution of ∆m during dark energy
domination. You may assume that the dark energy density ρ̄Λ obeys ρ̄Λ ≫ ρ̄m.

(d) Now consider a non-standard cosmological evolution in which, at a time tf during
matter domination, new physics instantaneously modifies the relevant evolution equation
(during matter domination, on subhorizon scales) to be:

∆̈m + 2H∆̇m − 4πGρ̄m(1− f)∆m = 0 (4)

where f is a constant, with 0 < 1 − f < 1. The background energy densities and the
background evolution are unaffected by this new physics. Show that, in this non-standard
cosmology, the amplitude of ∆m today is reduced, with respect to the amplitude in the
standard cosmology, by a factor

≈
(

tΛ
tf

)s(f)− 2
3

, (5)

where you should determine the function s(f), and tΛ is the time at which dark energy
domination begins.

(e) A ΛCDM cosmology with a higher dark energy density could give the same, reduced
amplitude of ∆m today as the new physics of part (d). Explain briefly and qualitatively
how measurements of large-scale structure could still distinguish this higher dark energy
density scenario from the new physics model of part (d).
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Consider a standard single-field slow-roll inflation model, where φ is the inflation
field and V (φ) is its potential. You may assume throughout the entire problem that

a(τ) = −(Hτ)−1 (with τ the conformal time) and that H =

√

V (φ)
3M2

pl

≈ constant.

(a) Canonical quantization leads to the following expression for the field operator f̂ = aδ̂φ,
describing perturbations to the inflation field δφ:

f̂(τ,x) =

∫

d3k

(2π)3/2

[

fk(τ)â
†
k
e−ik·x + f∗

k(τ)âke
ik·x

]

where f∗
k
(τ) = e−ikτ

√
2k

(1 − i
kτ ) and âk, â

†
k′ are lowering and raising operators. State

the commutation relations obeyed by âk and â†
k′ . By calculating the two point correlation

function of δφ, deduce the dimensionless power spectrum of δφ. Evaluate it when k ≪ aH,
and show that the spectrum is given by

∆2
δφ =

(

H

2π

)2

. (1)

[Hint: you may assume that the dimensionless power spectrum ∆2
δφ is related to the two

point correlation function via 〈0|δ̂φ(τ,x)δ̂φ(τ,x+ r)|0〉 =
∫

d3k
(2π)3

2π2

k3
∆2

δφe
−ik·r]

(b) Briefly physically motivate the following relation between the comoving curvature
perturbation R and δφ: R = H

˙̄φ
δφ. Deduce that the power spectrum of curvature

perturbations is

∆2
R(k) =

1

2ǫMpl2

(

H

2π

)2

, (2)

where ǫ ≡ − Ḣ
H2 = (φ̇)2

2H2Mpl2
is the Hubble slow-roll parameter. Specify when the right hand

side of this equation is to be evaluated.

(c) Show that in terms of derivatives of the inflationary potential, the scalar spectral index

ns ≡ 1 +
d ln∆2

R

d lnk is given by

ns − 1 = −3M2
pl

(

V ′

V

)2

+ 2M2
pl

(

V ′′

V

)

, (3)

where primes indicate derivatives with respect to φ. [Hint: you may assume that for the

Hubble slow-roll parameters ǫ = −d lnH
dN and η = d ln ǫ

dN the following relations hold during

slow-roll inflation:
M2

pl

2

(

V ′

V

)2
= ǫ and M2

pl

(

V ′′

V

)

= 2ǫ− η
2 .]

(d) A far-future CMB experiment measures ns − 1 = −0.04, with negligible error. The
parameter r, the tensor-to-scalar ratio, is also measured to be r = 0.001 with negligible
error; you may assume without proof that r is related to the slow-roll parameter by r = 16ǫ.
Assuming an inflation model described by a potential V (φ) = λφ4 for a constant λ, derive
a relation between ns − 1 and r. Is this inflation model consistent with the experimental
measurements?
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