# MAT3, MAMA, NST3AS, MAAS MATHEMATICAL TRIPOS Part III

Thursday, 6 June, 2019  $\,$  9:00 am to 12:00 pm  $\,$ 

### **PAPER 310**

### COSMOLOGY

Attempt no more than **THREE** questions. There are **FOUR** questions in total. The questions carry equal weight.

#### STATIONERY REQUIREMENTS

Cover sheet Treasury Tag Script paper Rough paper

#### **SPECIAL REQUIREMENTS** None

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

# UNIVERSITY OF

1

(a) For an arbitrary spacetime, write down the form of the energy-momentum tensor  $T_{\mu\nu}$  for a perfect fluid in any reference frame. Besides the spacetime metric, how many functions of spacetime does one need to specify in order to completely determine  $T_{\mu\nu}(x)$ ? Write down the equations that determine the evolution of  $T_{\mu\nu}$ .

(b) Write down the metric of an open, closed and flat FLRW spacetime, in any coordinates you like. What is the volume of the spatial hypersurface defined by constant cosmological time t in each of the three cases? Write down explicitly the evolution equations for  $T_{\mu\nu}$  in a spatially flat FLRW spacetime.

(c) Assume that the universe is flat. Write down an integral expression for the age of the universe as function of today's fractional energy densities  $\Omega_i(t_0)$ , with *i* being non-relativistic matter (a.k.a. "dust"), radiation and a cosmological constant where  $t_0$  is today's cosmological time. Then, assuming that there is only matter, compute the age of the universe in giga years, using today's value of the Hubble parameter  $H_0$ .

(d) Recall the definition of the Hubble slow-roll parameter

$$\epsilon \equiv -\frac{\dot{H}}{H^2} \,. \tag{1}$$

What values of  $\epsilon$  correspond to accelerated expansion and accelerated contraction, respectively? Consider a real canonical scalar field  $\phi$  with a potential of the form  $V = \lambda \phi^p$  for some positive p. For what values of  $\phi$  are the potential slow-roll parameters  $\epsilon_V$  and  $\eta_V$ smaller than one? Let  $\phi_*$  be such that

$$\epsilon_V(\phi_*), \eta_V(\phi_*) \ll 1.$$
(2)

Compute  $\epsilon(\phi_*, \dot{\phi}_*)$  assuming  $\dot{\phi}_* = 2\sqrt{\lambda}\phi_*^{p/2}$ . Is the expansion of the universe accelerated or decelerated for these values?

# UNIVERSITY OF

 $\mathbf{2}$ 

(a) Using dimensional analysis, determine the exponents  $\alpha_a$  in

$$\rho_{rel} = g \frac{\pi^2}{30} T^{\alpha_1} \lambda , \qquad \qquad \rho_{nr} = g \left(\frac{mT}{2\pi}\right)^{\alpha_2} e^{(\mu-m)/T} \left(m + \frac{3}{2}T\right) , \qquad (1)$$

$$n_{rel} = g \frac{\zeta(3)}{\pi^2} T^{\alpha_3} \tilde{\lambda} , \qquad \qquad s_{rel} = g \frac{2\pi^2}{45} T^{\alpha_4} \lambda , \qquad (2)$$

$$n_{nr} = g \left(\frac{mT}{2\pi}\right)^{\alpha_5} e^{(\mu-m)/T} , \qquad p_{nr} = g \left(\frac{mT}{2\pi}\right)^{\alpha_6} e^{(\mu-m)/T} T , \qquad (3)$$

where  $\lambda = \{1, 7/8\}, \ \tilde{\lambda} = \{1, 3/4\}$  for bosons and fermions respectively,  $\zeta(3) \simeq 1.2, T$  is the temperature, g is the number of degenerate states,  $\mu$  is the chemical potential, m is the mass, n is the number density,  $\rho$  the energy density, p the pressure, s the entropy density and the labels "rel" and "nr" indicate relativistic and non-relativistic particles respectively. In the following the labels  $\{e, p, n, b, \gamma\}$  refer to electrons, protons, neutrons, baryons and photons, respectively.

(b) Write down the main reaction that keeps electrons and positrons in chemical equilibrium around  $T \sim 1$  MeV. Compute  $n_e/n_\gamma$  as function of T for  $T < m_e$  assuming chemical equilibrium and that all chemical potentials are negligible.

(c) Using the Helium abundance today compute  $n_p/n_b$  [*Hint: You may approximate*  $m_{He} \simeq 4m_H$ , but do not neglect any term of order  $n_n/n_p$ ]. Then, using the baryon-to-photon number ratio today  $n_b/n_\gamma$  and the observed charge neutrality, estimate  $n_e/n_\gamma$ .

(d) Using the above results, determine before what temperature the chemical equilibrium between electron and positron must break down [*Hint: To find a numerical solution for the resulting transcendental equation, take the logarithm of the whole expression and neglect all numerical factors inside the log except for 10^{-10}. Recall \log 10 \simeq 2.3]* 

### CAMBRIDGE

3

At late times in the universe well after matter-radiation equality (and assuming K = 0 throughout), the gravitational potential  $\Phi$  is given by the Poisson equation

$$\nabla^2 \Phi = 4\pi G a^2 \bar{\rho}_m \Delta_m \tag{1}$$

in terms of the comoving gauge density contrast  $\Delta_m$ , the matter background density  $\bar{\rho}_m$ , and the scale factor *a*. The Einstein equation for potential evolution is

$$\Phi'' + 3\mathcal{H}\Phi' + (2\mathcal{H}' + \mathcal{H}^2)\Phi = 0, \qquad (2)$$

where primes indicate derivatives with respect to conformal time  $\tau$  and  $\mathcal{H}$  is the conformal Hubble rate. If required, you may use without proof that, from the Friedmann equations,  $\mathcal{H}' - \mathcal{H}^2 = -4\pi G a^2 \bar{\rho}_m$ .

(a) From the above equations, explain why  $\Phi \propto \Delta_m/a$  and hence show that the evolution equation for  $\Delta_m$ , rewritten in terms of cosmological time t, is given by:

$$\ddot{\Delta}_m + 2H\dot{\Delta}_m - 4\pi G\bar{\rho}_m \Delta_m = 0, \tag{3}$$

where dots indicate derivatives with respect to t.

(b) Show that this evolution equation implies that during matter domination the density contrast grows as  $\Delta_m \propto a$ .

(c) Explain briefly why increasing the dark energy density  $\bar{\rho}_{\Lambda}$  (assuming an equation of state w = -1 and no changes to other energy densities) reduces the growth of structure. From the evolution equation above, deduce the evolution of  $\Delta_m$  during dark energy domination. You may assume that the dark energy density  $\bar{\rho}_{\Lambda}$  obeys  $\bar{\rho}_{\Lambda} \gg \bar{\rho}_m$ .

(d) Now consider a non-standard cosmological evolution in which, at a time  $t_f$  during matter domination, new physics instantaneously modifies the relevant evolution equation (during matter domination, on subhorizon scales) to be:

$$\ddot{\Delta}_m + 2H\dot{\Delta}_m - 4\pi G\bar{\rho}_m(1-f)\Delta_m = 0 \tag{4}$$

where f is a constant, with 0 < 1 - f < 1. The background energy densities and the background evolution are unaffected by this new physics. Show that, in this non-standard cosmology, the amplitude of  $\Delta_m$  today is reduced, with respect to the amplitude in the standard cosmology, by a factor

$$\approx \left(\frac{t_{\Lambda}}{t_f}\right)^{s(f)-\frac{2}{3}},$$
(5)

where you should determine the function s(f), and  $t_{\Lambda}$  is the time at which dark energy domination begins.

(e) A  $\Lambda$ CDM cosmology with a higher dark energy density could give the same, reduced amplitude of  $\Delta_m$  today as the new physics of part (d). Explain briefly and qualitatively how measurements of large-scale structure could still distinguish this higher dark energy density scenario from the new physics model of part (d).

## CAMBRIDGE

 $\mathbf{4}$ 

Consider a standard single-field slow-roll inflation model, where  $\phi$  is the inflation field and  $V(\phi)$  is its potential. You may assume throughout the entire problem that  $a(\tau) = -(H\tau)^{-1}$  (with  $\tau$  the conformal time) and that  $H = \sqrt{\frac{V(\phi)}{3M_{\rm pl}^2}} \approx \text{constant}.$ 

(a) Canonical quantization leads to the following expression for the field operator  $\hat{f} = a\hat{\delta\phi}$ , describing perturbations to the inflation field  $\delta\phi$ :

$$\hat{f}(\tau, \mathbf{x}) = \int \frac{\mathrm{d}^3 k}{(2\pi)^{3/2}} \left[ f_{\mathbf{k}}(\tau) \hat{a}_{\mathbf{k}}^{\dagger} e^{-i\mathbf{k}\cdot\mathbf{x}} + f_{\mathbf{k}}^*(\tau) \hat{a}_{\mathbf{k}} e^{i\mathbf{k}\cdot\mathbf{x}} \right]$$

where  $f_{\mathbf{k}}^{*}(\tau) = \frac{e^{-ik\tau}}{\sqrt{2k}}(1-\frac{i}{k\tau})$  and  $\hat{a}_{\mathbf{k}}, \hat{a}_{\mathbf{k}'}^{\dagger}$  are lowering and raising operators. State the commutation relations obeyed by  $\hat{a}_{\mathbf{k}}$  and  $\hat{a}_{\mathbf{k}'}^{\dagger}$ . By calculating the two point correlation function of  $\delta\phi$ , deduce the dimensionless power spectrum of  $\delta\phi$ . Evaluate it when  $k \ll aH$ , and show that the spectrum is given by

$$\Delta_{\delta\phi}^2 = \left(\frac{H}{2\pi}\right)^2.\tag{1}$$

[Hint: you may assume that the dimensionless power spectrum  $\Delta_{\delta\phi}^2$  is related to the two point correlation function via  $\langle 0|\hat{\delta\phi}(\tau,\mathbf{x})\hat{\delta\phi}(\tau,\mathbf{x}+\mathbf{r})|0\rangle = \int \frac{\mathrm{d}^3k}{(2\pi)^3} \frac{2\pi^2}{k^3} \Delta_{\delta\phi}^2 e^{-i\mathbf{k}\cdot\mathbf{r}}$ ]

(b) Briefly physically motivate the following relation between the comoving curvature perturbation  $\mathcal{R}$  and  $\delta\phi$ :  $\mathcal{R} = \frac{H}{\phi}\delta\phi$ . Deduce that the power spectrum of curvature perturbations is

$$\Delta_{\mathcal{R}}^2(k) = \frac{1}{2\epsilon \mathrm{Mpl}^2} \left(\frac{H}{2\pi}\right)^2,\tag{2}$$

where  $\epsilon \equiv -\frac{\dot{H}}{H^2} = \frac{(\dot{\phi})^2}{2H^2 \text{Mpl}^2}$  is the Hubble slow-roll parameter. Specify when the right hand side of this equation is to be evaluated.

(c) Show that in terms of derivatives of the inflationary potential, the scalar spectral index  $n_s \equiv 1 + \frac{d \ln \Delta_R^2}{d \ln k}$  is given by

$$n_{s} - 1 = -3M_{\rm pl}^{2} \left(\frac{V'}{V}\right)^{2} + 2M_{\rm pl}^{2} \left(\frac{V''}{V}\right),\tag{3}$$

where primes indicate derivatives with respect to  $\phi$ . [*Hint: you may assume that for the Hubble slow-roll parameters*  $\epsilon = -\frac{d \ln H}{dN}$  and  $\eta = \frac{d \ln \epsilon}{dN}$  the following relations hold during slow-roll inflation:  $\frac{M_{\rm pl}^2}{2} \left(\frac{V'}{V}\right)^2 = \epsilon$  and  $M_{\rm pl}^2 \left(\frac{V''}{V}\right) = 2\epsilon - \frac{\eta}{2}$ .]

(d) A far-future CMB experiment measures  $n_s - 1 = -0.04$ , with negligible error. The parameter r, the tensor-to-scalar ratio, is also measured to be r = 0.001 with negligible error; you may assume without proof that r is related to the slow-roll parameter by  $r = 16\epsilon$ . Assuming an inflation model described by a potential  $V(\phi) = \lambda \phi^4$  for a constant  $\lambda$ , derive a relation between  $n_s - 1$  and r. Is this inflation model consistent with the experimental measurements?

Part III, Paper 310

#### [TURN OVER]



### END OF PAPER

Part III, Paper 310