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1

Let (x±; θ±, θ̄±) be coordinates on R
2|4 and let

Q± =
∂

∂θ±
+ iθ̄±

∂

∂x±
and Q̄± = −

∂

∂θ̄±
− iθ±

∂

∂x±
.

Define the chiral derivatives D± and D̄±, and show that {D+,Q±} = 0 and {D+, Q̄±} = 0.

A twisted chiral superfield U obeys D−U = 0 and D̄+U = 0. Give the component
expansion of U in terms of appropriate twisted chiral coordinates on R

2|2.

Write down the most general form of a supersymmetric action in a theory of a single
chiral superfield Φ and a single twisted chiral superfield U , together with their conjugates.
Explain why the terms you have written down are indeed supersymmetric. [You are not

required to give the action in component field form.]

Define how axial and vector U(1) transformations act on Φ and U , and give
conditions under which your action is invariant under each of these transformations at
the classical level.

2

a) For a = 1, . . . , n, let ηa(t) be complex fermions and η̄a(t) their Hermitian conjugates.
Consider the worldline Euclidean action

S[η, η̄] =

∫ 1

0
η̄aη̇

a + η̄aT
a
bη

b dt

where T is a constant, diagonalizable, traceless, n × n matrix. Find all canonical
commutation relations between the corresponding operators η̂a and ˆ̄ηb.

b) Identify the Hilbert space H of this model. Let N = η̂a ˆ̄ηa. How does (−1)N act on
a general state Ψ ∈ H?

c) Briefly explain why TrH((−1)N e−ˆ̄ηaTa
b
η̂b) can be written as a fermionic path integral

∫
e−S[η,η̄]DηDη̄ ,

where ηa(0) = ηa(1) and η̄a(0) = η̄a(1).

d) By computing the path integral, interpreted as an integral over all the Fourier modes
of the fields, show that

TrH((−1)N e−
ˆ̄ηaTa

b
η̂b) = det(1− e−T ) .

[You may assume that
∏∞

k=1(2πk)
2 = 1 in ζ-function regularization.]
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Consider supersymmetric quantum mechanics with action

S[X] =
i

2

∫
R1,1

gab(X)
dXa

dt
DXb dθ dt .

Here Xa(t, θ) = xa(t) + θψa(t) is a superfield describing maps X : R1,1 →M , where M is
an even dimensional manifold with Riemannian metric gab, while D = ∂/∂θ − iθ ∂/∂t.

a) Obtain the component form of the action, showing that it is invariant under
diffeomorphisms of M .

b) Show further that, provided the fields decay appropriately as |t| → ∞, the action is
invariant under the transformations

δxa = ǫψa , δψa = −iǫ
dxa

dt

where ǫ is a constant fermionic parameter. Find the corresponding Noether charge
Q.

c) Explain how the Hilbert space H of the corresponding quantum theory can be
understood in terms of the geometrical objects living on M .

Now let f :M →M be an isometry of g and consider the modified trace TrH((−1)F f e−βH),
where H is the Hamiltonian of the theory and F the fermion number operator.

d) Express this modified trace in terms of a path integral, stating the periodicity
conditions imposed on the fields xa(t) and ψa(t).

e) Explain why your path integral localizes to a neighbourhood of the set Mf ⊂ M
that is fixed by f .
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