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1 Given the stress tensor for the Bosonic string

T (z) = −
1

α′
: ∂Xµ(z)∂Xµ(z) :,

find the operator product expansion for T (z)T (ω) and hence show that under infinitesimal
conformal transformations where z → z + v(z), T (z) transforms as

δvT (z) =
c

12
∂3v(z) + 2∂v(z)T (z) + v(z)∂T (z),

where c is a constant you should find.

Show that the modes Ln of T (z) satisfy

[Lm, Ln] = (m− n)Lm+n +A(m)δm+n,0,

where you should find an expression for A(m). What is the physical significance of A(m)?

2 Starting with the path integral expression

〈

e−
∫
Σ
d2zJµXµ

〉

=

∫

DX exp

(

−
1

2πα′

∫

Σ
d2z ηµν∂X

µ∂̄Xν −

∫

Σ
d2z JµX

µ

)

show that

〈

e−
∫
Σ
d2zJµXµ

〉

∝ exp

(

1

2

∫

Σ×Σ
d2zd2ωJ(z)G(z, ω)J(ω)

)

×

∫

dDx exp

(

−xµ
∫

Σ
d2zJµ

)

(1)
where D is the dimension of spacetime, xµ is that part of the field Xµ which is independent
of z and z̄ and G(z, ω) satisfies

−
1

πα′
∂∂̄G(z, ω) = δ2(z − ω).

Using

G(z, ω) = −
α′

2
ln |z − ω|2,

and an appropriate choice for Jµ(z, z̄) in (1) show that

〈

eik1·X(z1,z̄1) eik2·X(z2,z̄2)...eikn·X(zn,z̄n)
〉

∝ δD





n
∑

j=1

kjµ





∏

i<j

|zi − zj|
α′ki·kj .

Hence derive an expression for the tree-level scattering amplitude for three tachyons, each
of mass m2 = −4/α′, explaining the origin of the various contributions to the amplitude.
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3 With reference to the gauge-fixing fermion Ψ, explain why the BRST operator QB

is required to satisfy {QB , QB} = 0. Hence show that the action

S = S0 + {QB ,Ψ},

is BRST-invariant if S0 is invariant under a particular gauge symmetry and Ψ is the
gauge-fixing fermion associated with this gauge symmetry.

The field φ(z) has conformal weight (h, h̄) = (1, 0). By considering a suitable
expansion for φ(z) in terms of modes φn, briefly explain why

φn|0〉 = 0, n > −h,

where |0〉 is the vacuum state. Hence, by considering the mode expansion of the b(z) and
c(ω) ghosts, derive the operator product expansion for b(z)c(ω). You may assume that
|z| > |ω|.

The ghost stress tensor is given by

Tgh(z) = ∂b(z) c(z) − 2∂(b(z)c(z)).

Derive the BRST transformation of the ghost field c(z) and hence, given a field Φ(z, z̄)
of weight (1, 1), write down two types of vertex operator (one local, the other integrated
over the worldsheet) and show that they are BRST-invariant.
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4 The stress tensor is

T (z) = −
1

α′
: ∂Xµ(z)∂Xµ(z) :

Find an expression for the mode operators Ln of the stress tensor in terms of the modes
αµ
n of the embedding fields Xµ. You may use the mode expansion

∂Xµ(z) = −i

√

α′

2

∑

n

αµ
nz

−n−1.

Derive an expression for the operator product expansion Xµ(z, z̄)Xν(ω, ω̄) and hence find
an expression for the commutator [αµ

m, αν
n].

Explain the relationship between the constraints arising from the vanishing of the
stress tensor and the mass-shell condition in spacetime and find expressions for the masses
of the states

|T 〉 = |k〉, |g〉 = εµνα
µ
−1ᾱ

ν
−1|k〉,

where k is a spacetime momentum and εµν is a constant polarisation tensor. What other
conditions must |g〉 satisfy in order to be physical?

Explain the relationship between the state |g〉, the operator

εµν∂X
µ(z)∂̄Xν(z̄) eik·X(z,z̄),

and deformations of the background spacetime metric.
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