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1 Type Ia supernovae can be observed at great distances, and are used to estimate the
current expansion rate of the Universe, the Hubble constantH0. Suppose the peak absolute
magnitudes of Type Ia supernovae are independent draws from an intrinsic Gaussian
distribution with population mean M0 and variance σ2

int:

Ms ∼ N(M0, σ
2
int)

for every supernova s. The true absolute magnitude is related to the true apparent
magnitude ms via the true distance modulus µs, which is a logarithmic measure of the
true distance ds:

ms = Ms + µs.

The definition of the distance modulus is µ = 25 + 5 log10[d Mpc−1], where Mpc is a
megaparsec. For every supernova s, we obtain an estimate of its peak apparent magnitude
m̂s with Gaussian error of known variance σ2

m,s, so that

m̂s|ms ∼ N(ms, σ
2
m,s).

Suppose we have a calibrator set of k = 1, . . . ,K supernovae located in nearby galaxies
in which we can observe Cepheid variable stars. For each calibrator supernova, we have
an unbiased distance modulus estimate µ̂C,k with a Gaussian error with variance σ2

C,k,
obtained from analyses of the Cepheid stars as distance indicators in the same galaxy:

µ̂C,k|µk ∼ N(µk, σ
2
C,k).

We also have a much larger (“Hubble Flow”) set of i = 1, . . . , N supernovae which are
much further away, so the Cepheids stars cannot be observed in their galaxies. However,
they are far enough away that they participate in the smooth, overall expansion of the
Universe. Thus, they follow the Hubble law, the linear relation between their recession
velocities vi = c zi and their distances di: di = czi/H0, where c is the speed of light and
zi is the redshift. Assume the redshift is measured exactly for each supernova i. The
units of the Hubble constant are km s−1 Mpc−1. Define h ≡ H0/(100 km s−1 Mpc−1),
θ ≡ 5 log10 h, and α ≡ 5/ ln 10 ≈ 2. Assume all errors are independent.

(a) Write down the likelihood function of (M0, θ) in terms of the data of the calibrator
set {m̂k, µ̂C,k} and the Hubble flow sample {m̂i, zi}, and the relevant variances.

(b) Assume all error variances and the intrinsic dispersion σ2
int are known. Derive the

maximum likelihood estimators for (M0, θ), checking 1st- and 2nd-order conditions.

(c) Simplify for the case where each source of measurement error is homoskedastic, i.e.
σC,k = σC for all calibrators, and σm,s = σm for all supernovae. Evaluate the bias and

variance of your estimators (M̂0, θ̂), and compare against the Cramér-Rao bound.

(d) As in part (c), assume that σC,k = σC for all calibrators, and σm,s = σm for all

supernovae. What is the maximum likelihood estimator ĥ for h? What is the sampling
distribution of ĥ? Derive approximations for the fractional bias (E[ĥ]− h)/h and the
fractional variance Var[ĥ]/h2 to leading order in σ2

θ̂
≡ Var[θ̂].
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2 The physics of galaxy formation often produces complex galactic systems, each
composed of a massive, central host galaxy surrounded by several dwarf galaxies with
different dynamical properties, such as the true angular momentum. We want to infer the
mass of our Milky Way (MW) galaxy using measurements of the dynamical properties
of its satellite dwarf galaxies. For each observed satellite s, we have a measurement ds
of (the magnitude of) its angular momentum xs. We also have a catalog of K satellite
dwarf galaxies found around massive host galaxies in a cosmological simulation. Each row
i in this catalog gives the true angular momentum xi of a satellite i, and the log mass,
mi = log10Mi, of its associated massive host galaxy. Each entry can be thought of as
a random draw (xi,mi) from a prior distribution P (x,m) that encodes the correlation
between the true angular momentum and host galaxy log mass induced by the physics
of galaxy formation encoded in the simulation. Assume the MW galaxy and each of its
satellites is a representative draw from this distribution.

(a) First, consider a single satellite of the MW, the Large Magellanic Cloud. The
measurement d is an unbiased estimate of x, but its error is Gaussian with known
variance σ2. Write down the likelihood function P (d |x). Write down an expression
for the normalised posterior probability density of the MW log mass, P (m| d), and
the posterior mean m̄, conditional on this single satellite.

(b) Derive an estimate of m̄ ≈
∑K

i=1 miwi and specify the importance weights wi.

(c) Because the importance weights are unequal, not all prior samples contribute equally
to the posterior estimate. A measure of effective sample size is ESS = K/[1+CV2(w)],
where the squared coefficient of variation is defined as CV2(w) = Var[w]/(E[w])2 , and

the weight w is regarded as a random variable. Show that the estimate ÊSS is only a
function of

∑K
i=1 w

2
i , and derive the function.

(d) The MW galaxy has Nsat = 9 classical dwarf satellite galaxies. Derive an expression
for estimating the posterior mean MW log mass, simultaneously conditioning on
the independent measurements d = {ds}, s = 1, . . . , Nsat, of all of these satellites
(each with known measurement variance σ2

s). You may assume that the true angular
momenta of the satellites are conditionally independent from each other, given the host
galaxy’s log mass P ({xs}|m) =

∏Nsat

s=1 P (xs|m). You may use the catalog simulation
samples to construct kernel density estimates of the marginal prior density P (m), and
the posterior densities P (m| ds), conditioning on each satellite s individually, without
specifying the optimal bandwidths.

(e) Suppose that we can compute P (m|d) (with proper normalisation) but cannot directly
sample from it, and we want to compute the posterior mean using importance
sampling. Prove that the optimal importance function to sample for approximating
the posterior mean of m, in the sense of minimum variance, is

Q∗(m) =
|m|P (m|d)∫
|m|P (m|d) dm

.

(You may use Jensen’s Inequality: E[g(X)] > g(E[X]) where g is a convex function
and X is a generic random variable.) Explain why this is not likely to be a useful
importance function.
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3 Quasar light curves (brightness time series) f(t) (in magnitudes) are often modelled
as realisations of an Orstein-Uhlenbeck (O-U) process, also called a damped random walk.
The O-U process is a Gaussian process (GP):

f(t) ∼ GP(m(t), kf (t, t
′) ),

with prior mean function m(t) = c and covariance function or kernel

Cov[f(t), f(t′)] = kf (t, t
′) = A2

f exp(−|t− t′|/τf )

with characteristic amplitude A2
f = τf σ

2/2. The short-term variability of the process is

controlled by σ2, and the characteristic timescale for the quasar brightness to revert to the
mean c is τf . In a doubly-lensed quasar system, a galaxy, along the line-of-sight between
the quasar and Earth, acts as a strong gravitational lens and produces two observed images
of the same quasar. However, the brightness time series of image 2 will have a constant
time delay (horizontal shift) ∆t and constant magnification (vertical shift) ∆m relative
to image 1 due to strong lensing effects. Each image’s light curve is further smoothly
modulated by time-dependent microlensing magnification functions gi(t), caused by the
movement of stars within the lens, which we can model as two ({i = 1, 2}) independent
realisations of a squared-exponential GP:

gi(t) ∼ GP(0, kg(t, t
′))

with prior mean zero and covariance function:

Cov[gi(t), gi(t
′)] = kg(t, t

′) = A2
g exp(−(t− t′)2/2τg),

with known hyperparameters Ag and τg. These functions g1(t) and g2(t) are independent
from each other and f(t). An astronomer measures the brightness time series y1 and y2

of two images of a lensed quasar at times t, so that

y1,j = f(tj) + g1(tj) + ǫ1,j

y2,j = f(tj −∆t) + ∆m+ g2(tj) + ǫ2,j

for j = 1, . . . , N observation times. Assume the heteroskedastic measurement errors ǫi,j
are independent, zero-mean Gaussian random variables with known variances, σ2

i,j.

(a) Derive the marginal likelihood function P (y1,y2|θ) of the time delay, magnification,
and O-U process parameters θ = (∆t,∆m, c,Af , τf ), with the two time series y1,y2

considered jointly.

(b) Suppose you have optimised this marginal likelihood to find point estimates θ̂ =
(∆t̂,∆m̂, ĉ, Âf , τ̂f ). Treating these as perfectly known, now you want to infer the
underlying light curve f(t) on a fine grid of times t∗, when the quasars were not
observed. Derive expressions for computing the posterior mean and variance of f(t)
at all times t∗, conditional on the observed data y1,y2 and times t.

(c) Using suitable non-informative priors, write down a posterior density P (θ|y1,y2).
Describe an MCMC algorithm to sample from this posterior density. Describe how
you would initialise, run and evaluate the MCMC.

(d) Prove that your MCMC algorithm respects detailed balance with a stationary distri-
bution equal to the posterior distribution.
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4 Consider performing a linear regression of quasars’ X-ray spectral indices vs.
bolometric luminosities in the presence of measurement error in both quantities and
intrinsic dispersion. Consider the probabilistic generative model:

ξi|µ, τ
2 ∼ N(µ, τ2)

ηi| ξi;α, β, σ
2 ∼ N(α+ βξi, σ

2)

xi|ξi ∼ N(ξi, σ
2
x,i)

yi|ηi ∼ N(ηi, σ
2
y,i)

The astronomer measures values D = {xi, yi}, which are noisy measurements of the
true luminosity ξi and true spectral index ηi of each quasar. The measurement errors
are independent and heteroskedastic with known variances {σ2

x,i, σ
2
y,i}, for i = 1, . . . , N

independent quasars.

(a) Write down the joint distribution P (xi, yi, ξi, ηi|α, β, σ
2, µ, τ2) for a single quasar,

conditional on the hyperparameters.

(b) Adopt “non-informative” hyperpriors on the hyperparameters: flat improper priors
for each of P (α), P (β), P (µ) and flat positive improper priors for each of P (τ2) and
P (σ2). Write down the full joint distribution of all data D, latent variables {ξi, ηi},
and hyperparamters α, β, σ2, µ, τ2.

(c) Draw a probabilistic graphical model representing this joint distribution.

(d) Construct a Gibbs sampler for the full joint posterior P ({ξi, ηi}, α, β, σ
2, µ, τ2| D) by

deriving a sequence of proposed moves that are always accepted. Specify the order in
which you run through your sequence. You have access to algorithms that generate
random draws from univariate and multivariate Gaussian distributions, and inverse-
gamma distributions with shape parameter a > 0 and scale parameter b > 0. An
inverse-gamma probability density is:

Inv-Gamma(x | a, b) =
ba

Γ(a)
x−(a+1) exp(−b/x),

for x > 0, and zero otherwise, and Γ(a) is a gamma function.

END OF PAPER
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