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We run a clinical trial to investigate the effect of a treatment on 100 ill patients.
We split patients into 4 groups of equal size according to their sex (F or M) and whether
they underwent the treatment or not (1 and 0); each response variable is the proportion
of healthy patients of the corresponding group at the end of the trial. The data is stored
in data frame treatments. Consider the following (shortened) R code:

> treatments

sex treatment healthypatients numpatients prop

1 F 0 19 25 0.76

2 F 1 14 25 0.56

3 M 0 17 25 0.68

4 M 1 18 25 0.72

> treatments.glm <- glm(prop ∼ sex+treatment, family=binomial,

weights = numpatients, data=treatments)

> summary(treatments.glm)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8537 0.3770 2.265 0.0235 *

sexM 0.1854 0.4310 0.430 0.6671

treatment1 -0.3698 0.4317 -0.857 0.3917

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2.5323 on 3 degrees of freedom

Residual deviance: 1.6102 on 1 degrees of freedom

...

(a) Write down the algebraic form of the fitted model. Show that the distribution
of each observation belongs to an exponential dispersion family. What are its natural and
dispersion parameters and its variance function?

(b) For each of the fitted coefficients, interpret the meaning of their sign in
terms of the fitted values. Conclude that the fitted model does not respect the order
prop[2] < prop[3] < prop[4] < prop[1] of the responses.

(c) Propose an extension of fitted model [within logistic regression models] with an
extra parameter and state how the code above should be changed to fit it. Does it recover
all the order relationships between entries of prop? Explain.

(d) State the deviance of model treatments.glm in terms of its fitted proportions
and the observed proportions. Assume that these fitted proportions are close enough to the
observed proportions. Show that the deviance of model treatments.glm is approximately
the generalised Pearson statistic. Hence, approximate the distribution of the generalised
Pearson statistic, and conclude whether there is evidence of overdispersion in a test with
significance level 5% approximately. [You may use any result for deviance without proof.]
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(a) Define the Akaike Information Criterion (AIC) and the Bayesian Information

Criterion (BIC), introducing all necessary notation.

(b) For what main purpose are AIC and BIC used? For each of the two criteria, give
a practical motivation to use it over the other. Mathematically, how do their expressions
differ? Briefly comment on the practical effect of this difference.

A practitioner has data X ∈ R
n×p and Y ∈ R

n, n, p > 2, X full rank, and would
like to relate Y to X by a linear regression model without intercept and with Gaussian
noise with mean 0 and variance 1. They consider K > 2 models with vectors of regression
coefficients βk), k = 1, . . . ,K. Let 1 6 p∗ < p be fixed throughout and assume the models
satisfy the following: for any k ∈ {1, . . . ,K}, βk) has exactly p − pk coordinates that are
always identically 0 for some pk ∈ [p∗, p]; and, pk = p∗ for one and only one k ∈ {1, . . . ,K}.

(c) State the log-likelihood and maximum likelihood estimator of a generic model.

(d) Assume p 6 n and that the data is generated by the model with pk = p∗.
Find the distribution of the AIC and BIC of a generic model. Hence, show the following
statements:

(i) if n > e, the practitioner selects the true model when they choose the model
with either minimal expected AIC or minimal expected BIC;

(ii) assume p∗ = 1 and p = 2; then, if n > e2, the probability that the practitioner
chooses the wrong model is fixed with n if they use standard AIC whilst, if they use
standard BIC, it is strictly smaller and vanishes as n → ∞.
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(a) In the context of generalised linear models (GLMs), define overdispersion and
give a reason that may cause it. Give a generalisation of a GLM that may account for
overdispersion when such reason is present in the original GLM.

Suppose a football manager is interested in knowing how the number of goals
their top 10 players scored varies across competitions and top two rivals. The data set
goals contains the following variables: player (factor with levels 1, . . . , 10); numgoals
(numerical valued), competition (factor with levels A, B and C); and, rival (factor with
levels R and S). They run the following (shortened) code:

> head(goals)

player numgoals competition rival

1 1 4 A R

2 1 2 A S

3 1 0 B R

4 1 0 B S

5 1 20 C R

6 1 10 C S

> goals.glmer <- glmer(numgoals ∼ competition + rival + (1|player),

data = goals, family = "poisson")

> summary(goals.glmer)

...

Random effects:

Groups Name Variance Std.Dev.

player (Intercept) 0.1168 0.3418

Number of obs: 60, groups: player, 10

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.7287 0.1856 3.926 8.65e-05 ***

competitionB -0.8899 0.2465 -3.610 0.000306 ***

competitionC 1.4961 0.1472 10.167 < 2e-16 ***

rivalS 0.4385 0.1124 3.901 9.57e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Correlation of Fixed Effects:

(Intr) cmpttB cmpttC

competitinB -0.387

competitinC -0.648 0.488

rivalS -0.368 0.000 0.000

(b) Write down the algebraic form of the fitted model and estimated coefficients.
How does it differ from a negative binomial model?

(c) What is the meaning (from a modelling perspective) of including covariate
player in the way it appears in the call to glmer and why you think the manager did so?
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How do you interpret the estimated fixed coefficient rivalS and what rival does it suggest
to be the strongest?

(d) Can we expect to be able to use the usual deviance-based test for the model
above to test for overdispersion in our data? Briefly comment why yes or no. Describe
in detail the construction of an approximate 95% confidence level test for overdispersion
using parametric bootstrap and the output above.

(e) Consider the following code:

> goals.glm <- glm(numgoals ∼ competition + rival, data = goals,

family = "poisson")

> customcorr(goals.glm)

(Intercept) competitionB competitionC

competitionB -0.480

competitionC -0.804 0.488

rivalS -0.457 -1.75e-16 -2.25e-16

The function customcorr returns the correlation matrix of the estimated coefficients of
the fitted model goals.glm. From a modelling perspective, what can you conclude by
comparing its output to that before part (b)?

4

(a) Cite the defining assumptions of Linear Discriminant Analysis (LDA). Under
these and for a given prior distribution on the space of labels, find the Bayes classifier
in terms of a discriminant function justifying every step in your calculations. Find the
classification boundaries, identifying the parameters that define them, and conclude the
Bayes classifier is a linear classifier.

Assume we have i.i.d. data (x1, y1), . . . , (xn, yn) ∈ R
p × {1, . . . , L}, n > L, and a

new observation x ∈ R
p to classify.

(b) State the form of the LDA classifier. Argue whether it may be more or less
robust to outliers than the (soft margin and linear) support vector machine classifier when
L = 2 [in your argument you may quote without proof any result from the course].

(c) Assume p > n. Is the LDA classifier well defined? Justify your answer. Is
it well defined if the sample covariance matrix is regularised by adding to it a strictly
positive (constant) multiple of the identity matrix? Justify your answer. Name a practical
procedure to find a value of this constant for prediction purposes.

(d) Show that the LDA classifier can be modified to be nonlinear by using a positive
definite kernel function. Remember to justify that the resulting modification is well defined
and nonlinear. [You may quote any theorem from the course without proof.]
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Each row of the data frame letter contains 16 different attributes of a pixel image
of one of the 26 capital letters in the English alphabet, together with the letter label itself.
A practitioner builds a classifier using the following (shortened) R code:

> head(letter)

lettr xbox ybox width ...

1 L 3 8 4 ...

2 N 2 2 3 ...

3 I 1 3 2 ...

4 X 5 7 7 ...

5 Q 2 2 2 ...

6 G 5 10 6 ...

> x <- as.matrix(letter[,-1])

> for(col in 1:16) x[,col] <- x[,col]/max(x[,col])

> y <- model.matrix(∼lettr-1, data=letter)

> layer1 <- layer_dense(units = 100, activation = 'relu',
input_shape = c(16))

> layer2 <- layer_dense(units = 75, activation = 'relu')
> layer3 <- layer_dense(units = 50, activation = 'relu')
> layer4 <- layer_dense(units = 26, activation = 'softmax')
> letter.n <- keras_model_sequential(list(layer1, layer2, layer3, layer4))

> compile(letter.n, optimizer='sgd', loss='categorical_crossentropy',
metrics='acc')
> fit(letter.n, x, y, batch_size=1, epochs=5)

(a) Write down algebraically the model fitted in letter.n. How many parameters
are in the model [you may leave the answer as a sum]?

(b) What does the for loop do and why do you think the practitioner included it?
The practitioner would like to use a sigmoid activation function in one and only one of
the layers layer1, layer2, layer3. In which would you suggest them to use it? Justify
your answer.

(c) Define the cross-entropy loss function algebraically. Write down the steps of the
numerical method instructed by the arguments optimizer='sgd', loss='categorical crossentropy'
and batch size=1, epochs=5 in the last two lines of code, introducing any necessary no-
tation. At what step of the numerical method is back-propagation used?

(d) Consider a feed-forward neural network with the following characteristics: at
least two hidden layers; at least two neurons in every layer including the output layer;
no bias nodes in any layer; fully connected; and, identity activation functions in all layers
except in the output layer, which has softmax output function. Assume that the two nodes
in the output layer have fixed and distinct vectors of parameters, and that you are given
a data set of size n. Show that for any such network there are infinitely many minimisers
of the cross-entropy loss function. Hence, between the arguments batch size=1 and
batch size=n, which would you choose to fit the model and why? [You may quote any
theorem from the course without proof.]
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In this question you may assume that the mean of any stochastic process is 0 and
that this is known. For a moving average model of order 1 (MA(1)), we denote its MA
parameter by θ and its white noise parameter by σ2.

(a) Define a moving average model of order q (MA(q)). Compute the autocovariance
function of an MA(1) process in terms of θ and σ2. Thus, show that if an MA(1) process
is Gaussian, θ and σ2 are not identifiable without further conditions.

(b) Define an invertible MA(q) process. Using the defining MA(1) identity, prove
that an MA(1) process is invertible if |θ| < 1.

(c) Assume we have n > 2 observations X1, . . . ,Xn of a Gaussian MA(1) process.

(i) What is the distribution of X1? Identify its parameters in terms of θ and σ2.
Show that the covariance matrix of the observations is positive definite; you should use
the defining MA(1) identity along the way.

(ii) Propose two ways to find an estimator of θ. Given any of these two estimators,
find an estimator of σ2. Justify every step in your calculations. State the asymptotic
properties of all these estimators, citing one assumption.

(d) The data frame ts contains a time series. Consider the following (shortened) R
code:

> arima(ts, order=c(1,0,0))

...

Coefficients:

... intercept

0.4773 0.0079

s.e. 0.0278 0.0728

sigma^2 estimated as 1.452: log likelihood = -1605.55, aic = 3217.1

> arima(ts, order=c(0,0,1))

...

Coefficients:

... intercept

0.9147 0.0084

s.e. 0.0130 0.0613

sigma^2 estimated as 1.026: log likelihood = -1432.9, aic = 2871.79

Based on the output, select a model. Give its name and the reason for selecting it. Based
on the output, construct a candidate for an approximate confidence interval for the non-
intercept parameter of your selected model. Which of the following three statements about
your interval do you expect to be true? (i) It roughly has the correct significance level;
(ii) it is too wide to have the right significance level; (iii) it is too narrow to have the right
significance level. Justify your answer.
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